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Lecture #1 – Decision Theory

Statistical Decision Theory

The James-Stein Estimator
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Decision Theoretic Preliminaries

Parameter θ ∈ Θ

Unknown state of nature, from parameter space Θ

Observed Data

Observe X with distribution Fθ from a sample space X

Estimator θ̂

An estimator (aka a decision rule) is a function from X to Θ

Loss Function L(θ, θ̂)

A function from Θ×Θ to R that gives the cost we incur if we

report θ̂ when the true state of nature is θ.
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Examples of Loss Functions

L(θ, θ̂) = (θ − θ̂)2 squared error loss

L(θ, θ̂) = |θ − θ̂| absolute error loss

L(θ, θ̂) = 0 if θ = θ̂, 1 otherwise zero-one loss

L(θ, θ̂) =
∫
log
[
f (x |θ)
f (x |θ̂)

]
f (x |θ) dx Kullback–Leibler loss
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(Frequentist) Risk of an Estimator θ̂

R(θ, θ̂) = Eθ

[
L(θ, θ̂)

]
=

∫
L
(
θ, θ̂(x)

)
dFθ(x)

The frequentist decision theorist seeks to evaulate, for

each θ, how much he would “expect” to lose if he used

θ̂(X ) repeatedly with varying X in the problem.

(Berger, 1985)

Example: Squared Error Loss

R(θ, θ̂) = Eθ

[
(θ − θ̂)2

]
= MSE = Var(θ̂) + Bias2θ(θ̂)

Econ 722, Spring ’19 Lecture 1 – Slide 4



Bayes Risk and Maximum Risk

Comparing Risk

R(θ, θ̂) is a function of θ rather than a single number. We want an

estimator with low risk, but how can we compare?

Maximum Risk

R̄(θ̂) = sup
θ∈Θ

R(θ, θ̂)

Bayes Risk

r(π, θ̂) = Eπ

[
R(θ, θ̂)

]
, where π is a prior for θ
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Bayes and Minimax Rules
Minimize the Maximum or Bayes risk over all estimators θ̃

Minimax Rule/Estimator

θ̂ is minimax if sup
θ∈Θ

R(θ, θ̂) = inf
θ̃
sup
θ∈Θ

R(θ, θ̃)

Bayes Rule/Estimator

θ̂ is a Bayes rule with respect to prior π if r(π, θ̂) = inf
θ̃
r(π, θ̃)
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Recall: Bayes’ Theorem and Marginal Likelihood

Let π be a prior for θ. By Bayes’ theorem, the posterior π(θ|x) is

π(θ|x) = f (x|θ)π(θ)
m(x)

where the marginal likelihood m(x) is given by

m(x) =

∫
f (x|θ)π(θ) dθ
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Posterior Expected Loss

Posterior Expected Loss

ρ
(
π(θ|x), θ̂

)
=

∫
L
(
θ, θ̂

)
π(θ|x) dθ

Bayesian Decision Theory

Choose an estimator that minimizes posterior expected loss.

Easier Calculation

Since m(x) does not depend on θ, to minimize ρ
(
π(θ|x), θ̂

)
it

suffices to minimize
∫
L(θ, θ̂)f (x|θ)π(θ) dθ.

Question

Is there a relationship between Bayes risk, r(π, θ̂) ≡ Eπ[R(θ, θ̂)],

and posterior expected loss?
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Bayes Risk vs. Posterior Expected Loss

Theorem

r(π, θ̂) =

∫
ρ
(
π(θ|x), θ̂(x)

)
m(x) dx

Proof

r(π, θ̂) =

∫
R(θ, θ̂)π(θ) dθ =

∫ [∫
L
(
θ, θ̂(x)

)
f (x|θ) dx

]
π(θ) dθ

=

∫ ∫
L
(
θ, θ̂(x)

)
[f (x|θ)π(θ)] dxdθ

=

∫ ∫
L
(
θ, θ̂(x)

)
[π(θ|x)m(x)] dxdθ

=

∫ [∫
L
(
θ, θ̂(x)

)
π(θ|x) dθ

]
m(x) dx

=

∫
ρ
(
π(θ|x), θ̂(x)

)
m(x) dx
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Finding a Bayes Estimator

Hard Problem

Find the function θ̂(x) that minimizes r(π, θ̂).

Easy Problem

Find the number θ̂ that minimizes ρ
(
π(θ|x), θ̂)

Punchline

Since r(π, θ̂) =

∫
ρ
(
π(θ|x), θ̂(x)

)
m(x) dx, to minimize r(π, θ̂) we

can set θ̂(x) to be the value θ̂ that minimizes ρ
(
π(θ|x), θ̂).
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Bayes Estimators for Common Loss Functions

Zero-one Loss

For zero-one loss, the Bayes estimator is the posterior mode.

Absolute Error Loss: L(θ, θ̂) = |θ − θ̂|
For absolute error loss, the Bayes estimator is the posterior median.

Squared Error Loss: L(θ, θ̂) = (θ − θ̂)2

For squared error loss, the Bayes estimator is the posterior mean.
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Derivation of Bayes Estimator for Squared Error Loss

By definition,

θ̂ ≡ argmin
a∈Θ

∫
(θ − a)2π(θ|x) dθ

Differentiating with respect to a, we have

2

∫
(θ − a)π(θ|x) dθ = 0∫

θπ(θ|x) dθ = a
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Example: Bayes Estimator for a Normal Mean
Suppose X ∼ N(µ, 1) and π is a N(a, b2) prior. Then,

π(µ|x) ∝ f (x |µ)× π(µ)

∝ exp

{
−1

2

[
(x − µ)2 +

1

b2
(µ− a)2

]}
∝ exp

{
−1

2

[(
1 +

1

b2

)
µ2 − 2

(
x +

a

b2

)
µ

]}
∝ exp

{
−1

2

(
b2 + 1

b2

)[
µ−

(
b2x + a

b2 + 1

)]2}

So π(µ|x) is N(m, ω2) with ω2 = b2

1+b2
and m = ω2x + (1− ω2)a.

Hence the Bayes estimator for µ under squared error loss is

θ̂(X ) =
b2X + a

1 + b2
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Minimax Analysis

Wasserman (2004)

The advantage of using maximum risk, despite its problems, is

that it does not require one to choose a prior.

Berger (1986)

Perhaps the greatest use of the minimax principle is in

situations for which no prior information is available . . . but

two notes of caution should be sounded. First, the minimax

principle can lead to bad decision rules. . . Second, the minimax

approach can be devilishly hard to implement.
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Methods for Finding a Minimax Estimator

1. Direct Calculation

2. Guess a “Least Favorable” Prior

3. Search for an “Equalizer Rule”

Method 1 rarely applicable so focus on 2 and 3. . .
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The Bayes Rule for a Least Favorable Prior is Minimax

Theorem

Let θ̂ be a Bayes rule with respect to π and suppose that for all θ ∈ Θ we

have R(θ, θ̂) ≤ r(π, θ̂). Then θ̂ is a minimax estimator, and π is called

a least favorable prior.

Proof

Suppose that θ̂ is not minimax. Then there exists another estimator θ̃

with supθ∈Θ R(θ, θ̃) < supθ∈Θ R(θ, θ̂). But since

r(π, θ̃) ≡ Eπ

[
R(θ, θ̃)

]
≤ Eπ

[
sup
θ∈Θ

R(θ, θ̃)

]
= sup

θ∈Θ
R(θ, θ̃)

but this implies that θ̂ is not Bayes with respect to π since

r(π, θ̃) ≤ sup
θ∈Θ

R(θ, θ̃) < sup
θ∈Θ

R(θ, θ̂) ≤ r(π, θ̂)

Econ 722, Spring ’19 Lecture 1 – Slide 16



Example of Least Favorable Prior

Bounded Normal Mean

I X ∼ N(θ, 1)

I Squared error loss

I Θ = [−m,m] for 0 < m < 1

Least Favorable Prior

π(θ) = 1/2 for θ ∈ {−m,m}, zero otherwise.

Resulting Bayes Rule is Minimax

θ̂(X ) = m tanh(mX ) = m

[
exp {mX} − exp {−mX}
exp {mX}+ exp {−mX}

]
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Equalizer Rules

Definition

An estimator θ̂ is called an equalizer rule if its risk function is

constant: R(θ, θ̂) = C for some C .

Theorem

If θ̂ is an equalizer rule and is Bayes with respect to π, then θ̂ is

minimax and π is least favorable.

Proof
r(π, θ̂) =

∫
R(θ, θ̂)π(θ) dθ =

∫
Cπ(θ) dθ = C

Hence, R(θ, θ̂) ≤ r(π, θ̂) for all θ so we can apply the preceding

theorem.
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Example: X1, . . . ,Xn ∼ iid Bernoulli(p)

Under a Beta(α, β) prior with α = β =
√
n/2,

p̂ =
nX̄ +

√
n/2

n +
√
n

is the Bayesian posterior mean, hence the Bayes rule under squared

error loss. The risk function of p̂ is,

R(p, p̂) =
n

4(n +
√
n)2

which is constant in p. Hence, p̂ is an equalizer rule, and by the

preceding theorem is minimax.
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Problems with the Minimax Principle

Risk

θ

0 1 1.5 2

1

2

R(θ, θ̃)

R(θ, θ̂)

Risk

θ

0 1 1.5 2

1

2

R(θ, θ̃)

R(θ, θ̂)

In the left panel, θ̃ is preferred by the minimax principle; in the right

panel θ̂ is preferred. But the only difference between them is that the

right panel adds an additional fixed loss of 1 for 1 ≤ θ ≤ 2.
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Problems with the Minimax Principle

Suppose that Θ = {θ1, θ2}, A = {a1, a2} and the loss function is:

a1 a2

θ1 10 10.01

θ2 8 -8

I Minimax principle: choose a1

I Bayes: Choose a2 unless π(θ1) > 0.9994

Minimax ignores the fact that under θ1 we can never do better than a loss

of 10, and tries to prevent us from incurring a tiny additional loss of 0.01
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Dominance and Admissibility

Dominance

θ̂ dominates θ̃ with respect to R if R(θ, θ̂) ≤ R(θ, θ̃) for all θ ∈ Θ

and the inequality is strict for at least one value of θ.

Admissibility

θ̂ is admissible if no other estimator dominates it.

Inadmissiblility

θ̂ is inadmissible if there is an estimator that dominates it.
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Example of an Admissible Estimator

Say we want to estimate θ from X ∼ N(θ, 1) under squared error

loss. Is the estimator θ̂(X ) = 3 admissible?

If not, then there is a θ̃ with R(θ, θ̃) ≤ R(θ, θ̂) for all θ. Hence:

R(3, θ̃) ≤ R(3, θ̂) =
{
E
[
θ̂ − 3

]}2
+ Var(θ̂) = 0

Since R cannot be negative for squared error loss,

0 = R(3, θ̃) =
{
E
[
θ̃ − 3

]}2
+ Var(θ̃)

Therefore θ̂ = θ̃, so θ̂ is admissible, although very silly!
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Bayes Rules are Admissible

Theorem A-1

Suppose that Θ is a discrete set and π gives strictly positive

probability to each element of Θ. Then, if θ̂ is a Bayes rule with

respect to π, it is admissible.

Theorem A-2

If a Bayes rule is unique, it is admissible.

Theorem A-3

Suppose that R(θ, θ̂) is continuous in θ for all θ̂ and that π gives

strictly positive probability to any open subset of Θ. Then if θ̂ is a

Bayes rule with respect to π, it is admissible.
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Admissible Equalizer Rules are Minimax

Theorem

Let θ̂ be an equalizer rule. Then if θ̂ is admissible, it is minimax.

Proof

Since θ̂ is an equalizer rule, R(θ, θ̂) = C . Suppose that θ̂ is not

minimax. Then there is a θ̃ such that

sup
θ∈Θ

R(θ, θ̃) < sup
θ∈Θ

R(θ, θ̂) = C

But for any θ, R(θ, θ̃) ≤ supθ∈Θ R(θ, θ̃). Thus we have shown that

θ̃ dominates θ̂, so that θ̂ cannot be admissible.
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Minimax Implies “Nearly” Admissible

Strong Inadmissibility

We say that θ̂ is strongly inadmissible if there exists an estimator

θ̃ and an ε > 0 such that R(θ, θ̃) < R(θ, θ̂)− ε for all θ.

Theorem

If θ̂ is minimax, then it is not strongly inadmissible.
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Example: Sample Mean, Unbounded Parameter Space

Theorem

Suppose that X1, . . . ,Xn ∼ N(θ, 1) with Θ = R. Under squared
error loss, one can show that θ̂ = X̄ is admissible.

Intuition

The proof is complicated, but effectively we view this estimator as

a limit of a of Bayes estimator with prior N(a, b2), as b2 →∞.

Minimaxity

Since R(θ, X̄ ) = Var(X̄ ) = 1/n, we see that X̄ is an equalizer rule.

Since it is admissible, it is therefore minimax.
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Recall: Gauss-Markov Theorem

Linear Regression Model

y = Xβ + ε, E[ε|X ] = 0

Best Linear Unbiased Estimator

I Var(ε|X ) = σ2I ⇒ then OLS has lowest variance among

linear, unbiased estimators of β.

I Var(ε|X ) 6= σ2I ⇒ then GLS gives a lower variance estimator.

What if we consider biased estimators and squared error loss?
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Multiple Normal Means: X ∼ N(θ, I )

Goal

Estimate the p-vector θ using X with L(θ, θ̂) = ||θ̂ − θ||2.

Maximum Likelihood Estimator θ̂

MLE = sample mean, but only one observation: θ̂ = X .

Risk of θ̂(
θ̂ − θ

)′ (
θ̂ − θ

)
= (X − θ)′ (X − θ) =

p∑
i=1

(Xi − θi )
2 ∼ χ2

p

Since E[χ2
p] = p, we have R(θ, θ̂) = p.
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Multiple Normal Means: X ∼ N(θ, I )

James-Stein Estimator

θ̂JS = θ̂

(
1− p − 2

θ̂′θ̂

)
= X − (p − 2)X

X ′X

I Shrinks components of sample mean vector towards zero

I More elements in θ ⇒ more shrinkage

I MLE close to zero (θ̂′θ̂ small) gives more shrinkage

Econ 722, Spring ’19 Lecture 1 – Slide 30



MSE of James-Stein Estimator

R
(
θ, θ̂JS

)
= E

[(
θ̂JS − θ

)′ (
θ̂JS − θ

)]
= E

[{
(X − θ)− (p − 2)X

X ′X

}′{
(X − θ)− (p − 2)X

X ′X

}]

= E
[
(X − θ)′ (X − θ)

]
− 2(p − 2)E

[
X ′(X − θ)

X ′X

]
+(p − 2)2 E

[
1

X ′X

]
= p − 2(p − 2)E

[
X ′(X − θ)

X ′X

]
+ (p − 2)2 E

[
1

X ′X

]

Using fact that R(θ, θ̂) = p
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Simplifying the Second Term

Writing Numerator as a Sum

E
[
X ′(X − θ)

X ′X

]
= E

[∑p
i=1 Xi (Xi − θi )

X ′X

]
=

p∑
i=1

E
[
Xi (Xi − θi )

X ′X

]

For i = 1, . . . , p

E
[
Xi (Xi − θi )

X ′X

]
= E

[
X ′X − 2X 2

i

(X ′X )2

]
Not obvious: integration by parts, expectation as a p-fold integral, X ∼ N(θ, I )

Combining

E
[
X ′(X − θ)

X ′X

]
=

p∑
i=1

E
[
X ′X − 2X 2

i

(X ′X )2

]
= pE

[
1

X ′X

]
− 2E

[∑p
i=1 X

2
i

(X ′X )2

]
= pE

[
1

X ′X

]
− 2E

[
X ′X

(X ′X )2

]
= (p − 2)E

[
1

X ′X

]
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The MLE is Inadmissible when p ≥ 3

R
(
θ, θ̂JS

)
= p − 2(p − 2)

{
(p − 2)E

[
1

X ′X

]}
+ (p − 2)2 E

[
1

X ′X

]
= p − (p − 2)2 E

[
1

X ′X

]
I E[1/(X ′X )] exists and is positive whenever p ≥ 3

I (p − 2)2 is always positive

I Hence, second term in the MSE expression is negative

I First term is MSE of the MLE

Therefore James-Stein strictly dominates MLE whenever p ≥ 3!
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James-Stein More Generally

I Our example was specific, but the result is general:

I MLE is inadmissible under quadratic loss in regression model

with at least three regressors.

I Note, however, that this is MSE for the full parameter vector

I James-Stein estimator is also inadmissible!

I Dominated by “positive-part” James-Stein estimator:

β̂JS = β̂

[
1− (p − 2)σ̂2

β̂′X ′X β̂

]
+

I β̂ = OLS, (x)+ = max(x , 0), σ̂2 = usual OLS-based estimator

I Stops us us from shrinking past zero to get a negative estimate

for an element of β with a small OLS estimate.

I Positive-part James-Stein isn’t admissible either!
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Lecture #2 – Model Selection I

Kullback-Leibler Divergence

Bias of Maximized Sample Log-Likelihood

Review of Asymptotics for Mis-specified MLE

Deriving AIC and TIC

Corrected AIC (AICc)

Mallow’s Cp
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Kullback-Leibler (KL) Divergence

Motivation

How well does a given density f (y) approximate an unknown true

density g(y)? Use this to select between parametric models.

Definition

KL(g ; f ) = EG

[
log

{
g(Y )

f (Y )

}]
︸ ︷︷ ︸

True density on top

= EG [log g(Y )]︸ ︷︷ ︸
Depends only on truth
Fixed across models

−EG [log f (Y )]︸ ︷︷ ︸
Expected

log-likelihood

Properties

I Not symmetric: KL(g ; f ) 6= KL(f ; g)

I By Jensen’s Inequality: KL(g ; f ) ≥ 0 (strict iff g = f a.e.)

I Minimize KL ⇐⇒ Maximize Expected log-likelihood
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KL(g ; f ) ≥ 0 with equality iff g = f almost surely

Jensen’s Inequality

If ϕ is convex, then ϕ(E[X ]) ≤ E[ϕ(X )], with strict equality when

ϕ is affine or X is constant.

log is concave so (− log) is convex

EG

[
log

{
g(Y )

f (Y )

}]
= EG

[
− log

{
f (Y )

g(Y )

}]
≥ − log

{
EG

[
f (Y )

g(Y )

]}
= − log

{∫ ∞

−∞

f (y)

g(y)
· g(y) dy

}
= − log

{∫ ∞

−∞
f (y) dy

}
= − log(1) = 0

Econ 722, Spring ’19 Lecture 2 – Slide 3



KL Divergence and Mis-specified MLE

Pseudo-true Parameter Value θ0

θ̂MLE
p→ θ0 ≡ argmin

θ∈Θ
KL(g ; fθ) = argmax

θ∈Θ
EG [log f (Y |θ)]

What if fθ is correctly specified?

If g = fθ for some θ then KL(g ; fθ) is minimized at zero.

Goal: Compare Mis-specified Models

EG [log f (Y |θ0)] versus EG [log h(Y |γ0)]

where θ0 is the pseudo-true parameter value for fθ and γ0 is the

pseudo-true parameter value for hγ .
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How to Estimate Expected Log Likelihood?
For simplicity: Y1, . . . ,Yn ∼ iid g(y)

Unbiased but Infeasible

EG

[
1

T
`(θ0)

]
= EG

[
1

T

T∑
t=1

log f (Yt |θ0)

]
= EG [log f (Y |θ0)]

Biased but Feasible

T−1`(θ̂MLE ) is a biased estimator of EG [log f (Y |θ0)].

Intuition for the Bias

T−1`(θ̂MLE ) > T−1`(θ0) unless θ̂MLE = θ0. Maximized sample

log-like. is an overly optimistic estimator of expected log-like.
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What to do about this bias?

1. General-purpose asymptotic approximation of “degree of

over-optimism” of maximized sample log-likelihood.

I Takeuchi’s Information Criterion (TIC)

I Akaike’s Information Criterion (AIC)

2. Problem-specific finite sample approach, assuming g ∈ fθ.

I Corrected AIC (AICc) of Hurvich and Tsai (1989)

Tradeoffs

TIC is most general and makes weakest assumptions, but requires

very large T to work well. AIC is a good approximation to TIC

that requires less data. Both AIC and TIC perform poorly when T

is small relative to the number of parameters, hence AICc .
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Recall: Asymptotics for Mis-specified ML Estimation
Model f (y |θ), pseudo-true parameter θ0. For simplicity Y1, . . . ,YT ∼ iid g(y).

Fundamental Expansion
√
T (θ̂ − θ0) = J−1

(√
TŪT

)
+ op(1)

J = −EG

[
∂ log f (Y |θ0)

∂θ∂θ′

]
, ŪT =

1

T

T∑
t=1

∂ log f (Yt |θ0)
∂θ

Central Limit Theorem
√
TŪT →d U ∼ Np(0,K), K = VarG

[
∂ log f (Y |θ0)

∂θ

]
√
T (θ̂ − θ0)→d J−1U ∼ Np(0, J

−1KJ−1)

Information Matrix Equality

If g = fθ for some θ ∈ Θ then K = J =⇒ AVAR(θ̂) = J−1
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Bias Relative to Infeasible Plug-in Estimator

Definition of Bias Term B

B =
1

T
`(θ̂)︸ ︷︷ ︸

feasible
overly-optimistic

−
∫

g(y) log f (y |θ̂) dy︸ ︷︷ ︸
uses data only once

infeas. not overly-optimistic

Question to Answer

On average, over the sampling distribution of θ̂, how large is B?

AIC and TIC construct an asymptotic approximation of E[B].
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Derivation of AIC/TIC

Step 1: Taylor Expansion

B = Z̄T + (θ̂ − θ0)
′J(θ̂ − θ0) + op(T

−1)

Z̄T =
1

T

T∑
t=1

{log f (Yt |θ0)− EG [log f (Y |θ0)}

Step 2: E[Z̄T ] = 0

E[B] ≈ E
[
(θ̂ − θ0)

′J(θ̂ − θ0)
]

Step 3:
√
T (θ̂ − θ0)→d J−1U

T (θ̂ − θ0)
′J(θ̂ − θ0)→d U ′J−1U
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Derivation of AIC/TIC Continued. . .

Step 3:
√
T (θ̂ − θ0)→d J−1U

T (θ̂ − θ0)
′J(θ̂ − θ0)→d U ′J−1U

Step 4: U ∼ Np(0,K )

E[B] ≈ 1

T
E[U ′J−1U] =

1

T
tr
{
J−1K

}
Final Result:

T−1tr
{
J−1K

}
is an asymp. unbiased estimator of the

over-optimism of T−1`(θ̂) relative to
∫
g(y) log f (y |θ̂) dy .
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TIC and AIC

Takeuchi’s Information Criterion

Multiply by 2T , estimate J,K ⇒ TIC = 2
[
`(θ̂)− tr

{
Ĵ−1K̂

}]
Akaike’s Information Criterion

If g = fθ then J = K ⇒ tr
{
J−1K

}
= p ⇒ AIC = 2

[
`(θ̂)− p

]
Contrasting AIC and TIC

Technically, AIC requires that all models under consideration are at

least correctly specified while TIC doesn’t. But J−1K is hard to

estimate, and if a model is badly mis-specified, `(θ̂) dominates.
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Corrected AIC (AICc) – Hurvich & Tsai (1989)

Idea Behind AICc

Asymptotic approximation used for AIC/TIC works poorly if p is

too large relative to T . Try exact, finite-sample approach instead.

Assumption: True DGP

y = Xβ0 + ε, ε ∼ N(0, σ2
0IT ), k Regressors

Can Show That

KL(g , f ) =
T

2

[
σ2
0

σ2
1

− log

(
σ2
0

σ2
1

)
− 1

]
+

(
1

2σ2
1

)
(β0 − β1)

′X′X(β0 − β1)

Where f is a normal regression model with parameters (β1, σ
2
1)

that might not be the true parameters.
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But how can we use this?

KL(g , f ) =
T

2

[
σ2
0

σ2
1

− log

(
σ2
0

σ2
1

)
− 1

]
+

(
1

2σ2
1

)
(β0 − β1)

′X′X(β0 − β1)

1. Would need to know (β1, σ
2
1) for candidate model.

I Easy: just use MLE (β̂1, σ̂
2
1)

2. Would need to know (β0, σ
2
0) for true model.

I Very hard! The whole problem is that we don’t know these!

Hurvich & Tsai (1989) Assume:

I Every candidate model is at least correctly specified

I Implies any candidate estimator (β̂, σ̂2) is consistent for truth.
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Deriving the Corrected AIC

Since (β̂, σ̂2) are random, look at E[K̂L], where

K̂L =
T

2

[
σ2
0

σ̂2
− log

(
σ2
0

σ̂2

)
− 1

]
+

(
1

2σ̂2

)
(β̂ − β0)

′X′X(β̂ − β0)

Finite-sample theory for correctly spec. normal regression model:

E
[
K̂L
]
=

T

2

{
T + k

T − k − 2
− log(σ2

0) + E[log σ̂2]− 1

}

Eliminate constants and scaling, unbiased estimator of E[log σ̂2]:

AICc = log σ̂2 +
T + k

T − k − 2

a finite-sample unbiased estimator of KL for model comparison
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Motivation: Predict y from x via Linear Regression

y
(T×1)

= X
(T×K)

β
(K×1)

+ ε

E[ε|X] = 0, Var(ε|X) = σ2I

I If β were known, could never achieve lower MSE than by

using all regressors to predict.

I But β is unknown so we have to estimate it from data ⇒
bias-variance tradeoff.

I Could make sense to exclude regressors with small

coefficients: add small bias but reduce variance.
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Operationalizing the Bias-Variance Tradeoff Idea

Mallow’s Cp

Approximate the predictive MSE of each model relative to the

infeasible optimum in which β is known.

Notation

I Model index m and regressor matrix Xm

I Corresponding OLS estimator β̂m padded out with zeros

I Xβ̂m = X(−m)0+ Xm

[
(X′

mXm)
−1X′

m

]
y = Pmy
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In-sample versus Out-of-sample Prediction Error

Why not compare RSS(m)?

In-sample prediction error: RSS(m) = (y − Xβ̂m)
′(y − Xβ̂m)

From your Problem Set

RSS cannot decrease even if we add irrelevant regressors. Thus

in-sample prediction error is an overly optimistic estimate of

out-of-sample prediction error.

Bias-Variance Tradeoff

Out-of-sample performance of full model (using all regressors)

could be very poor if there is a lot of estimation uncertainty

associated with regressors that aren’t very predictive.
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Predictive MSE of Xβ̂m relative to infeasible optimum Xβ

Step 1: Algebra

Xβ̂m − Xβ = Pmy − Xβ = Pm(y − Xβ)− (I− Pm)Xβ

= Pmε− (I− Pm)Xβ

Step 2: Pm and (I− Pm) are both symmetric and idempotent, and

orthogonal to each other

∣∣∣∣∣∣Xβ̂m − Xβ
∣∣∣∣∣∣2 = {Pmε− (I− Pm)Xβ}′ {Pmε+ (I− Pm)Xβ}

= ε′P′
mPmε− β′X′(I− Pm)

′Pmε− ε′P′
m(I− Pm)Xβ

+ β′X′(I− Pm)(I− Pm)Xβ

= ε′Pmε+ β′X′(I− Pm)Xβ
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Predictive MSE of Xβ̂m relative to infeasible optimum Xβ

Step 3: Expectation of Step 2 conditional on X

MSE(m|X) = E
[
(Xβ̂m − Xβ)′(Xβ̂m − Xβ)|X

]
= E

[
ε′Pmε|X

]
+ E

[
β′X′(I− Pm)Xβ|X

]
= E

[
tr
{
ε′Pmε

}
|X
]
+ β′X′(I− Pm)Xβ

= tr
{
E[εε′|X]Pm

}
+ β′X′(I− Pm)Xβ

= tr
{
σ2Pm

}
+ β′X′(I− Pm)Xβ

= σ2km + β′X′(I− Pm)Xβ

where km denotes the number of regressors in Xm and tr(Pm) =

tr
{
Xm (X′

mXm)
−1 X′

m

}
= tr

{
X′

mXm (X′
mXm)

−1
}
= tr(Im) = km
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Now we know the MSE of a given model. . .

MSE(m|X) = σ2km + β′X′(I− Pm)Xβ

Bias-Variance Tradeoff

I Smaller Model ⇒ σ2km smaller: less estimation uncertainty.

I Bigger Model ⇒ X′(I− Pm)X = ||(I− Pm)X||2 is in general

smaller: less (squared) bias.

Mallow’s Cp

I Problem: MSE formula is infeasible since it involves β and σ2.

I Solution: Mallow’s Cp constructs an unbiased estimator.

I Idea: what about plugging in β̂ to estimate second term?
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What if we plug in β̂ to estimate the second term?
For the missing algebra in Step 4, see the lecture notes.

Notation

Let β̂ denote the full model estimator and P be the corresponding

projection matrix: Xβ̂ = Py.

Crucial Fact

span(Xm) is a subspace of span(X), so PmP = PPm = Pm.

Step 4: Algebra using the preceding fact

E
[
β̂
′
X′(I− Pm)Xβ̂|X

]
= · · · = β′X′(I−Pm)Xβ+E

[
ε′(P− Pm)ε|X

]
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Substituting β̂ doesn’t work. . .

Step 5: Use “Trace Trick” on second term from Step 4

E[ε′(P− Pm)ε|X] = E[tr
{
ε′(P− Pm)ε

}
|X]

= tr
{
E[εε′|X](P− Pm)

}
= tr

{
σ2(P− Pm)

}
= σ2 (trace {P} − trace {Pm})

= σ2(K − km)

where K is the total number of regressors in X

Bias of Plug-in Estimator

E
[
β̂
′
X′(I− Pm)Xβ̂|X

]
= β′X′(I− Pm)Xβ︸ ︷︷ ︸

Truth

+σ2(K − km)︸ ︷︷ ︸
Bias
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Putting Everything Together: Mallow’s Cp

Want An Unbiased Estimator of This:

MSE(m|X) = σ2km + β′X′(I− Pm)Xβ

Previous Slide:

E
[
β̂
′
X′(I− Pm)Xβ̂|X

]
= β′X′(I− Pm)Xβ + σ2(K − km)

End Result:

MC(m) = σ̂2km +
[
β̂
′
X′(I− Pm)Xβ̂ − σ̂2(K − km)

]
= β̂

′
X′(I− Pm)Xβ̂ + σ̂2(2km − K )

is an unbiased estimator of MSE, with σ̂2 = y′(I− P)y/(T − K )
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Why is this different from the textbook formula?

Just algebra, but tedious. . .

MC(m)− 2σ̂2km = β̂′X ′(I− PM)X β̂ − K σ̂2

...

= y′(I− PM)y − T σ̂2

= RSS(m)− T σ̂2

Therefore:
MC(m) = RSS(m) + σ̂2(2km − T )

Divide Through by σ̂2:

Cp(m) =
RSS(m)

σ̂2
+ 2km − T

Tells us how to adjust RSS for number of regressors. . .
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Lecture #3 – Model Selection II

Bayesian Model Comparison

Bayesian Information Criterion (BIC)

K-fold Cross-validation

Asymptotic Equivalence Between LOO-CV and TIC
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Bayesian Model Comparison: Marginal Likelihoods

Bayes’ Theorem for Model m ∈M

π(θ|y,m)︸ ︷︷ ︸
Posterior

∝ π(θ|m)︸ ︷︷ ︸
Prior

f (y|θ,m)︸ ︷︷ ︸
Likelihood

f (y|m)︸ ︷︷ ︸
Marginal Likelihood

=

∫
Θ

π(θ|m)f (y|θ,m) dθ

Posterior Model Probability for m ∈M

P(m|y) = P(m)f (y|m)

f (y)
=

∫
Θ
P(m)f (y,θ|m) dθ

f (y)
=

P(m)

f (y)

∫
Θ

π(θ|m)f (y|θ,m) dθ

where P(m) is the prior model probability and f (y) is constant across models.
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Laplace (aka Saddlepoint) Approximation
Suppress model index m for simplicity.

General Case: for T large. . .

∫
Θ

g(θ) exp{T · h(θ)} dθ ≈
(
2π

T

)p/2

exp{T · h(θ0)}g(θ0) |H(θ0)|−1/2

p = dim(θ), θ0 = arg maxθ∈Θh(θ), H(θ0) = −
∂2h(θ)

∂θ∂θ′

∣∣∣∣
θ=θ0

Use to Approximate Marginal Likelihood

h(θ) =
`(θ)

T
=

1

T

T∑
t=1

log f (Yi |θ), H(θ) = JT (θ) = −
1

T

T∑
t=1

∂2 log f (Yi |θ)
∂θ∂θ′ , g(θ) = π(θ)

and substitute θ̂MLE for θ0
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Laplace Approximation to Marginal Likelihood
Suppress model index m for simplicity.

∫
Θ

π(θ)f (y|θ) dθ ≈
(
2π

T

)p/2

exp
{
`(θ̂MLE )

}
π(θ̂MLE )

∣∣∣JT (θ̂MLE )
∣∣∣−1/2

`(θ) =
T∑
t=1

log f (Yi |θ), H(θ) = JT (θ) = − 1

T

T∑
t=1

∂2 log f (Yi |θ)
∂θ∂θ′
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Bayesian Information Criterion

f (y |m) =

∫
Θ

π(θ)f (y|θ) dθ ≈
(
2π

T

)p/2

exp
{
`(θ̂MLE )

}
π(θ̂MLE )

∣∣∣JT (θ̂MLE )
∣∣∣−1/2

Take Logs and Multiply by 2

2 log f (y|m) ≈ 2`(θ̂MLE )︸ ︷︷ ︸
Op(T )

− p log(T )︸ ︷︷ ︸
O(log T )

+ p log(2π) + 2 log π(θ̂)− log |JT (θ̂)|︸ ︷︷ ︸
Op(1)

The BIC

Assume uniform prior over models and ignore lower order terms:

BIC(m) = 2 log f (y|θ̂,m)− pm log(T )

large-sample Frequentist approx. to Bayesian marginal likelihood
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Model Selection using a Hold-out Sample

I The real problem is double use of the data: first for

estimation, then for model comparison.

I Maximized sample log-likelihood is an overly optimistic

estimate of expected log-likelihood and hence KL-divergence

I In-sample squared prediction error is an overly optimistic

estimator of out-of-sample squared prediction error

I AIC/TIC, AICc , BIC, Cp penalize sample log-likelihood or RSS

to compensate.

I Another idea: don’t re-use the same data!
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Hold-out Sample: Partition the Full Dataset

Full Dataset

Training Set Test Set

Estimate

models:

θ̂1, . . . , θ̂M

Evaluate fit

of θ̂1, . . . , θ̂M

against Test Set

Unfortunately this is extremely wasteful of data. . .
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K -fold Cross-Validation: “Pseudo-out-of-sample”

Full Dataset

Fold 2Fold 1 Fold K. . .

Step 1

Randomly partition full dataset into K folds of approx. equal size.

Step 2

Treat kth fold as a hold-out sample and estimate model using all

observations except those in fold k: yielding estimator θ̂(−k).

Econ 722, Spring ’19 Lecture 3 – Slide 8



K -fold Cross-Validation: “Pseudo-out-of-sample”

Step 2

Treat kth fold as a hold-out sample and estimate model using all

observations except those in fold k: yielding estimator θ̂(−k).

Step 3

Repeat Step 2 for each k = 1, . . . ,K .

Step 4

For each t calculate the prediction ŷ
−k(t)
t of yt based on θ̂(−k(t)),

the estimator that excluded observation t.
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K -fold Cross-Validation: “Pseudo-out-of-sample”

Step 4

For each t calculate the prediction ŷ
−k(t)
t of yt based on θ̂(−k(t)),

the estimator that excluded observation t.

Step 5

Define CVK = 1
T

∑T
t=1 L

(
yt , ŷ

−k(t)
t

)
where L is a loss function.

Step 5

Repeat for each model & choose m to minimize CVK (m).

CV uses each observation for parameter estimation and model

evaluation but never at the same time!

Econ 722, Spring ’19 Lecture 3 – Slide 10



Cross-Validation (CV): Some Details

Which Loss Function?
I For regression squared error loss makes sense

I For classification (discrete prediction) could use zero-one loss.

I Can also use log-likelihood/KL-divergence as a loss function. . .

How Many Folds?

I One extreme: K = 2. Closest to Training/Test idea.

I Other extreme: K = T Leave-one-out CV (LOO-CV).

I Computationally expensive model ⇒ may prefer fewer folds.

I If your model is a linear smoother there’s a computational trick that

makes LOO-CV extremely fast. (Problem Set)

I Asymptotic properties are related to K . . .
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Relationship between LOO-CV and TIC

Theorem

LOO-CV using KL-divergence as the loss function is asymptotically

equivalent to TIC but doesn’t require us to estimate the Hessian

and variance of the score.
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Large-sample Equivalence of LOO-CV and TIC

Notation and Assumptions

For simplicity let Y1, . . . ,YT ∼ iid. Let θ̂(t) be the maximum

likelihood estimator based on all observations except t and θ̂ be

the full-sample estimator.

Log-likelihood as “Loss”

CV1 =
1
T

∑T
t=1 log f (yt |θ̂(t)) but since min. KL = max. log-like.

we choose the model with highest CV1(m).
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Overview of the Proof

First-Order Taylor Expansion of log f
(
yt |θ̂(t)

)
around θ̂:

CV1 =
1

T

T∑
t=1

log f (yt |θ̂(t))

=
1

T

T∑
t=1

[
log f (yt |θ̂) +

∂ log f (yt |θ̂)
∂θ′

(
θ̂(t) − θ̂

)]
+ op(1)

=
`(θ̂)

T
+

1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

(
θ̂(t) − θ̂

)
+ op(1)

Why isn’t the first-order term zero in this case?
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Important Side Point

Definition of ML Estimator

∂`(θ̂)

∂θ′
=

1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ

= 0

In Contrast

1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

(
θ̂(t) − θ̂

)
=

[
1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

θ̂(t)

]
− θ̂

[
1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

]

=
1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

θ̂(t) 6= 0
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Overview of Proof

From expansion two slides back, we simply need to show that:

1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

(
θ̂(t) − θ̂

)
= − 1

T
tr
(
Ĵ−1K̂

)
+ op(1)

K̂ =
1

T

T∑
t=1

(
∂ log f (yt |θ̂)

∂θ

)(
∂ log f (yt |θ̂)

∂θ

)′

Ĵ = − 1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ∂θ′
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Overview of Proof

By the definition of K̂ and the properties of the trace operator:

− 1

T
tr
{
Ĵ−1K̂

}
= − 1

T
tr

{
Ĵ−1

[
1

T

T∑
t=1

(
∂ log f (yt |θ̂)

∂θ

)(
∂ log f (yt |θ̂)

∂θ

)′]}

=

[
1

T

T∑
t=1

tr

{
−Ĵ−1

T

(
∂ log f (yt |θ̂)

∂θ

)(
∂ log f (yt |θ̂)

∂θ

)′}]

=
1

T

T∑
t=1

∂ log f (yt |θ̂)
∂θ′

(
− 1

T
Ĵ−1

)
∂ log f (yt |θ̂)

∂θ

So it suffices to show that(
θ̂(t) − θ̂

)
= − 1

T
Ĵ−1

[
∂ log f (yt |θ̂)

∂θ

]
+ op(1)
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What is an Influence Function?

Statistical Functional

T = T(G ) maps a CDF G to Rp.

Example: ML Estimation

θ0 = T(G ) = argmin
θ∈Θ

EG

[
log

{
g(Y )

f (Y |θ)

}]

Influence Function

Let δy be the CDF of a point mass at y : δy (a) = 1 {y ≤ a}.
Influence function = functional derivative: how does a small

change in G affect T?

infl(G , y) = lim
ε→0

T [(1− ε)G + εδy ]− T(G )

ε

Econ 722, Spring ’19 Lecture 3 – Slide 18



Relating Influence Functions to θ̂(t)

Empirical CDF Ĝ

Ĝ (a) =
1

T

T∑
t=1

1 {yt ≤ a} = 1

T

T∑
t=1

δyt (a)

Relation to “LOO” Empirical CDF Ĝ(t)

Ĝ =

(
1− 1

T

)
Ĝ(t) +

δyt
T

Applying T to both sides. . .

T(Ĝ ) = T
(
(1− 1/T )Ĝ(t) + δyt/T

)
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Relating Influence Functions to θ̂(t)

Some algebra, followed by taking ε = 1/T to zero gives:

T(Ĝ ) = T
(
(1− 1/T )Ĝ(t) + δyt/T

)
T(Ĝ )− T(Ĝ(t)) = T

(
(1− 1/T )Ĝ(t) + δyt/T

)
− T(Ĝ(t))

T(Ĝ )− T(Ĝ(t)) =
1

T

T
(
(1− 1/T )Ĝ(t) + δyt/T

)
− T(Ĝ(t))

1/T


T(Ĝ )− T(Ĝ(t)) =

1

T
infl
(
Ĝ(t), yt

)
+ op(1)

θ̂ − θ̂(t) =
1

T
infl
(
Ĝ , yt

)
+ op(1)

Last step: difference between having Ĝ vs. Ĝ(t) in infl is negligible
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Steps for Last part of TIC/LOO-CV Equivalence Proof

Step 1

Let Ĝ denote the empirical CDF based on y1, . . . , yT . Then:(
θ̂(t) − θ̂

)
= − 1

T
infl(Ĝ , yt) + op(1)

Step 2

Lecture Notes: For ML, infl(G , y) = J−1 ∂
∂θ log f (y |θ0).

Step 3

Evaluating Step 2 at Ĝ and substituting into Step 2(
θ̂(t) − θ̂

)
= − 1

T
Ĵ−1

[
∂ log f (yt |θ̂)

∂θ

]
+ op(1)
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Lecture #4 – Asymptotic Properties

Overview

Weak Consistency

Consistency

Efficiency

AIC versus BIC in a Simple Example

Econ 722, Spring ’19 Lecture 4 – Slide 1



Overview

Asymptotic Properties

What happens as the sample size increases?

Consistency

Choose “best” model with probability approaching 1 in the limit.

Efficiency

Post-model selection estimator with low risk.

Some References

Sin and White (1992, 1996), Pötscher (1991), Leeb & Pötscher

(2005), Yang (2005) and Yang (2007).
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Penalizing the Likelihood

Examples we’ve seen:

TIC = 2`T (θ̂)− 2trace
{
Ĵ−1K̂

}
AIC = 2`T (θ̂)− 2 length(θ)

BIC = 2`T (θ̂)− log(T ) length(θ)

Generic penalty cT ,k

IC (Mk) = 2
T∑
t=1

log fk,t(Yt |θ̂k)− cT ,k

How does choice of cT ,k affect behavior of the criterion?
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Weak Consistency: Suppose Mk0 Uniquely Minimizes KL

Assumption

lim inf
T→∞

(
min
k 6=k0

1

T

T∑
t=1

{KL(g ; fk,t)− KL(g ; fk0,t)}

)
> 0

Consequences

I Any criterion with cT ,k > 0 and cT ,k = op(T ) is weakly

consistent: selects Mk0 wpa 1 in the limit.

I Weak consistency still holds if cT ,k is zero for one of the

models, so long as it is strictly positive for all the others.
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Both AIC and BIC are Weakly Consistent

Both satisfy T−1cT ,k
p→ 0.

BIC Penalty: cT ,k = log(T )× length(θk)

AIC Penalty: cT ,k = 2× length(θk)
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Consistency: No Unique KL-minimizer

Example

If the truth is an AR(5) model then AR(6), AR(7), AR(8), etc.

models all have zero KL-divergence.

Principle of Parsimony

Among the KL-minimizers, choose the simplest model, i.e. the one

with the fewest parameters.

Notation

J = be the set of all models that attain minimum KL-divergence

J0 = subset with the minimum number of parameters.
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Sufficient Conditions for Consistency

Consistency: Select Model from J0 wpa 1

lim
T→∞

P
{

min
`∈J\J0

[IC (Mj0)− IC (M`)] > 0

}
= 1

Sufficient Conditions

(i) For all k 6= ` ∈ J
T∑
t=1

[log fk,t(Yt |θ∗k)− log f`,t(Yt |θ∗` )] = Op(1)

where θ∗k and θ∗` are the KL minimizing parameter values.

(ii) For all j0 ∈ J0 and ` ∈ (J \J0)
P (cT ,` − cT ,j0 →∞) = 1
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BIC is Consistent; AIC and TIC Are Not

I AIC and TIC cannot satisfy (ii) since (cT ,` − cT ,j0) does not

depend on sample size.

I It turns out that AIC and TIC are not consistent.

I BIC is consistent:

cT ,` − cT ,j0 = log(T ) {length(θ`)− length(θj0)}

I Term in braces is positive since ` ∈ J \J0, i.e. ` is not as

parsimonious as j0

I log(T )→∞, so BIC always selects a model in J0 in the limit.
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Efficiency: Risk Properties of Post-selection Estimator

Setup

I Models M0 and M1; corresponding estimators θ̂0,T and θ̂1,T

I Model Selection: If M̂ = 0 choose M0; if M̂ = 1 choose M1.

Post-selection Estimator

θ̂
M̂,T
≡ 1{M̂=0}θ̂0,T + 1{M̂=1}θ̂1,T

Two Sources of Randomness

Variability in θ̂
M̂,T

arises both from
(
θ̂0,T , θ̂1,T

)
and from M̂.

Question

How does the risk of θ̂
M̂,T

compare to that of other estimators?
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Efficiency: Risk Properties of Post-selection Estimator

Pointwise-risk Adaptivity

θ̂
M̂,T

is pointwise-risk adaptive if for any fixed θ ∈ Θ,

R(θ, θ̂
M̂,T

)

min
{
R(θ, θ̂0,T ), R(θ, θ̂1,T )

} → 1, as T →∞

Minimax-rate Adaptivity

θ̂
M̂,T

is minimax-rate adaptive if

sup
T

 sup
θ∈Θ

R(θ, θ̂
M̂,T

)

inf
θ̃T

sup
θ∈Θ

R(θ, θ̃T )

 <∞
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The Strengths of AIC and BIC Cannot be Shared

Theorem

No model post-model selection estimator can be both

pointwise-risk adaptive and minimax-rate adaptive.

AIC vs. BIC

I BIC is pointwise-risk adaptive but AIC is not. (This is

effectively identical to consistency.)

I AIC is minimax-rate adaptive, but BIC is not.

I Further Reading: Yang (2005), Yang (2007)
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Consistency and Efficiency in a Simple Example

Information Criteria

Consider criteria of the form ICm = 2`(θ)− dT × length(θ).

True DGP

Y1, . . . ,YT ∼ iid N(µ, 1)

Candidate Models

M0 assumes µ = 0, M1 does not restrict µ. Only one parameter:

IC0 = 2max
µ
{`(µ) : M0}

IC1 = 2max
µ
{`(µ) : M1} − dT
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Log-Likelihood Function

Simple Algebra

`T (µ) = Constant− 1

2

T∑
t=1

(Yt − µ)2

Tedious Algebra
T∑
t=1

(Yt − µ)2 = T (Ȳ − µ)2 + T σ̂2

Combining These

`T (µ) = Constant− T

2

(
Ȳ − µ

)2
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The Selected Model M̂

Information Criteria

M0 sets µ = 0 while M1 uses the MLE Ȳ , so we have

IC0 = 2max
µ
{`(µ) : M0} = 2× Constant− TȲ 2

IC1 = 2max
µ
{`(µ) : M1} − dT = 2× Constant− dT

Difference of Criteria

IC1 − IC0 = TȲ 2 − dT

Selected Model

M̂ =

{
M1, |

√
TȲ | ≥

√
dT

M0, |
√
TȲ | <

√
dT
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Verifying Weak Consistency: µ 6= 0

KL Divergence for M0 and M1

KL(g ;M0) = µ2/2, KL(g ;M1) = 0

Condition on KL-Divergence

lim inf
T→∞

1

T

T∑
t=1

{KL(g ;M0)− KL(g ;M1)} = lim inf
T→∞

1

T

T∑
t=1

(
µ2

2
− 0

)
> 0

Condition on Penalty

I Need cT ,k = op(T ), i.e. cT ,k/T
p→ 0.

I Both AIC and BIC satisfy this

I If µ 6= 0, both AIC and BIC select M1 wpa 1 as T →∞.
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Verifying Consistency: µ = 0

What’s different?

I Both M1 and M0 are true and minimize KL divergence at zero.

I Consistency says choose most parsimonious true model: M0

Verifying Conditions for Consistency

I N(0, 1) model nested inside N(µ, 1) model

I Truth is N(0, 1) so LR-stat is asymptotically χ2(1) = Op(1).

I For penalty term, need P(cT ,k − cT ,0)→∞

I BIC satisfies this but AIC doesn’t.
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Finite-Sample Selection Probabilities: AIC

AIC Sets dT = 2

M̂AIC =

{
M1, |

√
TȲ | ≥

√
2

M0, |
√
TȲ | <

√
2

P
(
M̂AIC = M1

)
= P

(∣∣∣√TȲ
∣∣∣ ≥ √

2
)

= P
(∣∣∣√Tµ+ Z

∣∣∣ ≥ √
2
)

= P
(√

Tµ+ Z ≤ −
√
2
)
+
[
1− P

(√
Tµ+ Z ≤

√
2
)]

= Φ
(
−
√
2−

√
Tµ
)
+
[
1− Φ

(√
2−

√
Tµ
)]

where Z ∼ N(0, 1) since Ȳ ∼ N(µ, 1/T ) because Var(Yt) = 1.
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Finite-Sample Selection Probabilities: BIC

BIC sets dT = log(T )

M̂BIC =

{
M1, |

√
TȲ | ≥

√
log(T )

M0, |
√
TȲ | <

√
log(T )

Same steps as for the AIC except with
√
log(T ) in the place of

√
2:

P
(
M̂BIC = M1

)
= P

(∣∣∣√TȲ
∣∣∣ ≥√log(T )

)
= Φ

(
−
√

log(T )−
√
Tµ
)
+
[
1− Φ

(√
log(T )−

√
Tµ
)]

Interactive Demo: AIC vs BIC
https://fditraglia.shinyapps.io/CH_Figure_4_1/
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Probability of Over-fitting

I If µ = 0 both models are true but M0 is more parsimonious.

I Probability of over-fitting (Z denotes standard normal):

P
(
M̂ = M1

)
= P

(
|
√
TȲ | ≥

√
dT
)
= P(|Z | ≥

√
dT )

= P(Z 2 ≥ dT ) = P(χ2
1 ≥ dT )

I AIC: dT = 2 and P(χ2
1 ≥ 2) ≈ 0.157.

I BIC: dT = log(T ) and P(χ2
1 ≥ logT )→ 0 as T →∞.

AIC has ≈ 16% prob. of over-fitting; BIC does not over-fit in the limit.
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Risk of the Post-Selection Estimator

The Post-Selection Estimator

µ̂ =

{
Ȳ , |

√
TȲ | ≥

√
dT

0, |
√
TȲ | <

√
dT

Recall from above

Recall from above that
√
TȲ =

√
Tµ+ Z where Z ∼ N(0, 1)

Risk Function

MSE risk times T to get risk relative to minimax rate: 1/T .

R(µ, µ̂) = T · E
[
(µ̂− µ)2

]
= E

[(√
T µ̂−

√
Tµ
)2]
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The Simplifed MSE Risk Function

R(µ, µ̂) = 1− [aφ(a)− bφ(b) + Φ(b)− Φ(a)] + Tµ2 [Φ(b)− Φ(a)]

= 1 + [bφ(b)− aφ(a)] + (Tµ2 − 1) [Φ(b)− Φ(a)]

where

a = −
√
dT −

√
Tµ

b =
√

dT −
√
Tµ

https://fditraglia.shinyapps.io/CH_Figure_4_2/
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Understanding the Risk Plot

AIC

I For any µ 6= 0, risk → 1 as T →∞, the risk of the MLE

I For µ = 0, risk 9 0, risk of “zero” estimator

I Max risk is bounded

BIC

I For any µ 6= 0, risk → 1 as T →∞, the risk of the MLE

I For µ = 0, risk → 0, risk of “zero” estimator

I Max risk is unbounded
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Lecture #5 – Andrews (1999) Moment Selection Criteria

Lightning Review of GMM

The J-test Statistic Under Correct Specification

The J-test Statistic Under Mis-specification

Andrews (1999; Econometrica)
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Generalized Method of Moments (GMM) Estimation

Notation

Let vt be a (r × 1) random vector, θ be a (p × 1) parameter

vector, and f be a (q × 1) vector of real-valued functions.

Popn. Moment Conditions

E [f (vt , θ0)] = 0

Sample Moment Conditions

ḡT (θ) =
1

T

T∑
t=1

f (vt , θ)

GMM Estimator

θ̂T = argmin
θ∈Θ

ḡT (θ)
′ WT
(q×q)

ḡT (θ), WT →p W (psd)
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Key Assumptions for GMM I

Stationarity

The sequence {vt : −∞ < t <∞} is strictly stationary. This

implies that any moments of vt are constant over t.

Global Identification

E[f (vt , θ0)] = 0 but E[f (vt , θ̃)] 6= 0 for any θ̃ 6= θ0.

Regularity Conditions for Moment Functions

f : V ×Θ→ Rq satisfies:

(i) f is vt-almost surely continuous on Θ

(ii) E [f (vt , θ)] <∞ exists and is continuous on Θ
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Key Assumptions for GMM I

Regularity Conditions for Derivative Matrix

(i) ∇θ′f (vt , θ) exists and is vt-almost continuous on Θ

(ii) E [∇θf (vt , θ0)] <∞ exists and is continuous in a

neighborhood Nε of θ0

(iii) sup
θ∈Nε

∣∣∣∣∣∣T−1
∑T

t=1∇θf (vt , θ)− E [∇θf (vt , θ)]
∣∣∣∣∣∣ p→ 0

Regularity Conditions for Variance of Moment Conditions

(i) E [f (vt , θ0)f (vt , θ0)
′] exists and is finite.

(ii) lim
T→∞

Var
[√

TḡT (θ0)
]
= S exists and is a finite, positive

definite matrix.
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Main Results for GMM Estimation
Under the Assumptions Described Above

Consistency: θ̂T
p→ θ0

Asymptotic Normality:
√
T (θ̂T − θ0)

d→ N (0,MSM ′)

M = (G0WG0)
−1G ′

0W

S = lim
T→∞

Var
[√

TḡT (θ0)
]

G0 = E [∇θ′ f (vt , θ0)]

W = plimT→∞WT
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The J-test Statistic

JT = T ḡT (θ̂
′
T ) Ŝ

−1 ḡT (θ̂T )

Ŝ →p S = lim
T→∞

Var
[√

TḡT (θ0)
]

ḡT (θ̂T ) =
1

T

T∑
t=1

f (vt , θ̂T )

θ̂T = GMM Estimator
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Case I: Correct Specification

Suppose that all of the preceding assumptions hold, in particular

that the model is correctly specified:

E[f (vt , θ0)] = 0

Recall that under the standard assumptions, the GMM estimator is

consistent regardless of the choice of WT . . .
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Case I: Taylor Expansion under Correct Specification

W
1/2
T

√
TḡT (θ̂T ) = [Iq − P(θ0)]W

1/2
√
TḡT (θ0) + op(1)

P(θ0) = F (θ0)
[
F (θ0)

′F (θ0)
]−1

F (θ0)
′

F (θ0) = W 1/2E [∇θf (vt , θ0)]

Over-identification

If dim(f ) > dim(θ0), W
1/2E[f (vt , θ0)] is the linear combn. used in

GMM estimation.

Identifying and Over-Identifying Restrictions

P(θ0) ≡ identifying restrictions;

Iq − P(θ0) ≡ over-identifying restrictions
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J-test Statistic Under Correct Specification

W
1/2
T

√
TḡT (θ̂T ) = [Iq − P(θ0)]W

1/2
√
TḡT (θ0) + op(1)

I CLT for
√
TḡT (θ0)

I Iq − P(θ0) has rank (q − p), since P(θ0) has rank p.

I Singular normal distribution

I W
1/2
T

√
TḡT (θ̂T )

d→ N (0,NW 1/2SW 1/2N ′)

I Substituting Ŝ−1, JT
d→ χ2

q−p
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Case II: Fixed Mis-specification

E[f (vt , θ)] = µ(θ), ||µ(θ)|| > 0, ∀θ ∈ Θ

N.B.

This can only occur in the over-identified case, since we can always

solve the population moment conditions in the just-identified case.

Notation

I θ∗ ≡ solution to identifying restrictions (θ̂T →p θ∗)

I µ∗ = µ(θ∗) = plimT→∞ḡT (θ̂T )
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Case II: Fixed Mis-specification

1

T
JT = ḡT (θ̂T )

′Ŝ−1ḡT (θ̂T ) = µ′
∗Wµ∗ + op(1)

I W positive definite

I since µ(θ) > 0 for all θ ∈ Θ.

I Hence: µ′
∗Wµ∗ > 0

I Fixed mis-specification ⇒ J-test statistic diverges at rate T :

JT = Tµ′
∗Wµ∗ + op(T )
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Summary: Correct Specification vs. Fixed Mis-specification

Correct Specification: JT ⇒ χ2
q−p = Op(1)

Fixed Mis-specification: JT = Op(T )
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Andrews (1999; Econometrica)

I Family of moment selection criteria (MSC) for GMM

I Aims to consistently choose any and all correct MCs and

eliminate incorrect MCs

I AIC/BIC: add a penalty to maximized log-likelihood

I Andrews MSC: add a bonus term to the J-statistic

I J-stat shows how well MCs “fit”

I Compares θ̂T estimated using P(θ0) to MCs from Iq − P(θ0)

I J-stat tends to increase with degree of overidentification even

if MCs are correct, since it converges to a χ2
q−p
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Andrews (1999) – Notation

fmax ≡ (q × 1) vector of all MCs under consideration

c ≡ (q × 1) selection vector: zeros and ones indicating which MCs are included

C ≡ set of all candidates c

|c| ≡ # of MCs in candidate c

Let θ̂T (c) be the efficient two-step GMM estimator based on the moment

conditions E [f (vt , θ, c)] = 0 and define

Vθ(c) =
[
G0(c)S(c)

−1G0(c)
]−1

G0(c) = E [∇′
θf (vt , θ0; c)]

S(c) = lim
T→∞

Var

[
1√
T

T∑
t=1

f (vt , θ0; c)

]

JT (c) = TḡT
(
θ̂T (c); c

)′
ŜT (c)

−1ḡT
(
θ̂T (c); c

)
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Identification Condition

I Andrews wants maximual set of correct MCs

I Consistent, minimum asymptotic variance

I But different θ values could solve E[f (vt , θ, c)] for different c!

I Which θ0 are we actually trying to be consistent for?

More Notation

I Z0 ≡ set of all c for which ∃ θ with E[f (vt , θ, c)] = 0

I MZ0 ≡ subset of Z0 with maximal |c |.

Assumption

Andrews assumes thatMZ0 = {c0}, a singleton.
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Family of Moment Selection Criteria

I Criteria of the form MSC(c) = JT (c)− B(T , |c|)

I B is a bonus term that depends on sample size and # of MCs

I Choose ĉT = argmin
c∈C

MSC(c)

I Implementation Detail: Andrews suggests using a centered covariance

matrix estimator:

Ŝ(c) =
1

T

T∑
t=1

[
f (vt , θ̂T (c); c)− ḡT (θ̂T (c); c)

] [
f (vt , θ̂T (c); c)− ḡT (θ̂T (c); c)

]′
based on the weighting matrix that would be efficient if the moment

conditions were correctly specified. This remains consistent for S(c) even

under fixed mis-specification
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Regularity Conditions for the J-test Statistic

(i) If E[f (vt , θ; c)] = 0 for a unique θ ∈ Θ, then JT (c)
d→ χ2

|c|−p

(ii) If E[f (vt , θ; c)] 6= 0 for a all θ ∈ Θ then T−1JT (c)
p→ a(c), a finite,

positive constant that may depend on c.

Regularity Conditions for Bonus Term

The bonus term can be written as B(|c|,T ) = κTh(|c|), where

(i) h(·) is strictly increasing

(ii) κT → ∞ as T → ∞ and κT = o(T )

Identification Conditions

(i) MZ0 = {c0}

(ii) E[f (vt , θ0; c0)] = 0 and E [f (vt , θ; c0)] 6= 0 for any θ 6= θ0
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Consistency of Moment Selection

Theorem

Under the preceding assumptions, MSC (c) is a consistent moment

selection criterion, i.e. ĉT
p→ c0.

Some Examples

GMM-BIC(c) = JT (c)− (|c | − p) log(T )

GMM-HQ(c) = JT (c)− 2.01 (|c | − p) log
(
log(T )

)
GMM-AIC(c) = JT (c)− 2 (|c | − p)

How do these examples behave?

I GMM-AIC: κT = 2

I GMM-BIC: limT→∞ log(T )/T = 0 X

I GMM-HQ: limT→∞ log
(
log(T )

)
/T = 0 X
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Proof

Need to show

lim
T→∞

P

MSCT (c)−MSET (c0)︸ ︷︷ ︸
∆T (c)

> 0

 = 1 for any c 6= c0

Defintion of MSCT (c)

∆T (c) = [JT (c)− JT (c0)] + κT [h(|c0|)− h(|c |)]

Two Cases

I. Unique θ1 such that E [f (vt , θ1; c1)] = 0 (c1 6= c0)

II. For all θ ∈ Θ we have E [f (vt , θ; c2)] 6= 0 (c2 6= c0)
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Case I: c1 6= c0 is “correctly specified”

1. Regularity Condition (i) for J-stat. applies to c0 and c1

JT (c1)− JT (c0)→d χ2
|c1|−p − χ2

|c0|−p = Op(1)

2. Identification Condition (i) says c0 is the unique, maximal set of

correct moment conditions =⇒ |c0| > |c1|

3. Bonus Term Condition (i): h is strictly increasing

=⇒ h(|c0|)− h(|c1|) > 0

4. Bonus Term Condition (ii): κT diverges to infinity

=⇒ κ,T [h(|c0| − h(|c1|)]→∞

5. Therefore: ∆T (c1) = Op(1) + κT [h(|c0| − h(|c1|)]→∞ X
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Case II: c2 6= c0 is mis-specified

1. Regularity Condition (i) for J-stat. applies to c0; (ii) applies to c2

1

T
[JT (c2)− JT (c0)] = [a(c2)+op(1)]+

[
1

T
χ2
|c0|−p

]
= a(c2)+op(1)

2. Bonus Term Condition (ii): h is strictly increasing. Since |c0| and
|c2| are finite =⇒ [h(|c0|)− h(|c1|)] is finite

3. Bonus Term Condition (i): κT = o(T ). Combined with prev. step:

1

T
[κT {h(|c0|)− h(|c2|)}] =

1

T
[o(T )× Constant] = o(1)

4. (1 and 3) =⇒ 1
T ∆T (c2) = a(c2) + op(1) + o(1)→p a(c2) > 0

5. Therefore ∆T (c2)→∞ wpa 1 as T →∞.
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Lecture #6 – Focused Moment Selection

DiTraglia (2016, JoE)
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Focused Moment Selection Criterion (FMSC)

Additional

Assumptions?

Baseline

Assumptions
Data

Estimation &

Inference for µ

1. Choose False Assumptions on Purpose

2. Focused Choice of Assumptions

3. Local mis-specification

4. Averaging, Inference post-selection
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GMM Framework

Baseline

Assumptions
E [g(Z , θ)] = 0 θ̂

Data

Estimation &

Inference for

µ = µ(θ)
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Adding Moment Conditions

Baseline

Assumptions

E [g(Z , θ)] = 0

E [h(Z , θ)] = 0
θ̃

Additional

Assumption

Data

Estimation &

Inference for

µ = µ(θ)
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Ordinary versus Two-Stage Least Squares

yi = βxi + εi

xi = z′iπ + vi

E [ziεi ] = 0

E [xiεi ] = ?

Econ 722, Spring ’19 Lecture 6 – Slide 5



Choosing Instrumental Variables

yi = βxi + εi

xi = Π′
1z

(1)
i +Π′

2z
(2)
i + vi

E [z
(1)
i εi ] = 0

E [z
(2)
i εi ] = ?
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FMSC Asymptotics – Local Mis-Specification

Baseline

Assumptions

E [g(Zni , θ)] = 0

E [h(Zni , θ)] = τn
Choice of MCs

Data

τn =
τ√
n

AMSE for

Estimator of

µ = µ(θ)
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Local Mis-Specification for OLS versus TSLS

yi = βxi + εi

xi = z′iπ + vi

E [ziεi ] = 0

E [xiεi ] = τ/
√
n
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Local Mis-Specification for Choosing IVs

yi = βxi + εi

xi = Π′
1z

(1)
i +Π′

2z
(2)
i + vi

E [z
(1)
i εi ] = 0

E [z
(2)
i εi ] = τ/

√
n
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Local Mis-Specification

Triangular Array {Zni : 1 ≤ i ≤ n, n = 1, 2, . . .} with

(a) E [g(Zni , θ0)] = 0

(b) E [h(Zni , θ0)] = n−1/2τ

(c) {f (Zni , θ0) : 1 ≤ i ≤ n, n = 1, 2, . . .} uniformly integrable

(d) Zni →d Zi , where the Zi are identically distributed.

Shorthand: Write Z for Zi
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Candidate GMM Estimator

θ̂S = arg min
θ∈Θ

[ΞS fn(θ)]
′ W̃S [ΞS fn(θ)]

ΞS = Selection Matrix (ones and zeros)

W̃S = Weight Matrix (p.s.d.)

fn(θ) =

[
gn(θ)

hn(θ)

]
=

[
n−1

∑n
i=1 g(Zni , θ)

n−1
∑n

i=1 h(Zni , θ)

]
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Notation: Limit Quantities

G = E [∇θ g(Z , θ0)] , H = E [∇θ h(Z , θ0)] , F =

[
G

H

]

Ω = Var [f (Z , θ0)] =

[
Ωgg Ωgh

Ωhg Ωhh

]

W̃S →p WS (p.d.)

Econ 722, Spring ’19 Lecture 6 – Slide 12



Local Mis-Specification + Standard Regularity Conditions

Every candidate estimator is consistent for θ0 and

√
n(θ̂S − θ0)→d −KSΞS

([
Mg

Mh

]
+

[
0

τ

])

KS = [F ′
SWSFS ]

−1F ′
SWS

M = (M ′
g ,M

′
h)

′

M ∼ N(0,Ω)
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Scalar Target Parameter µ

µ = µ(θ) Z-a.s. continuous function

µ0 = µ(θ0) true value

µ̂S = µ(θ̂S) estimator

Delta Method

√
n (µ̂S − µ0)→d −∇θµ(θ0)

′KSΞS

(
M +

[
0

τ

])
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FMSC: Estimate AMSE(µ̂S) and minimize over S

AMSE (µ̂S) = ∇θµ(θ0)
′KSΞS

{[
0 0

0 ττ ′

]
+Ω

}
Ξ′
SK

′
S∇θµ(θ0)

Estimating the unknowns

No consistent estimator of τ exists! (But everything else is easy)
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A Plug-in Estimator of τ

Baseline

Assumptions
E [g(Zni , θ)] = 0 θ̂Valid

Data

hn(θ̂Valid) ≈ τ√
n

E [h(Zni , θ)] =
τ√
n
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An Asymptotically Unbiased Estimator of ττ ′

√
nhn(θ̂v ) = τ̂ →d (ΨM + τ) ∼ Nq(τ,ΨΩΨ′)

Ψ =
[
−HKv Iq

]
τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂ is an asymptotically unbiased estimator of ττ ′.
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FMSC: Asymptotically Unbiased Estimator of AMSE

FMSCn(S) = ∇θµ(θ̂)
′K̂SΞS

{[
0 0

0 B̂

]
+ Ω̂

}
Ξ′
S K̂

′
S∇θµ(θ̂)

B̂ = τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′

Choose S to minimize FMSCn(S) over the set of candidates S .
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A (Very) Special Case of the FMSC

Under homoskedasticity, FMSC selection in the OLS versus TSLS

example is identical to a Durbin-Hausman-Wu test with α ≈ 0.16

τ̂ = n−1/2x′(y − xβ̃TSLS)

OLS gets benefit of the doubt, but not as much as α = 0.05, 0.1
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Limit Distribution of FMSC

FMSCn(S)→d FMSCS , where

FMSCS = ∇θµ(θ0)
′KSΞS

{[
0 0

0 B

]
+Ω

}
Ξ′
SK

′
S∇θµ(θ0)

B = (ΨM + τ)(ΨM + τ)′ −ΨΩΨ′

Conservative criterion: random even in the limit.
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Moment Average Estimators

µ̂ =
∑
S∈S

ω̂S µ̂S

Additional Notation

µ̂ Moment-average Estimator

µ̂S Estimator of target parameter under moment set S

ω̂S Data-dependent weight function

S Collection of moment sets under consideration
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Examples of Moment-Averaging Weights

Post-Moment Selection Weights

ω̂S = 1 {MSCn(S) = minS ′∈S MSCn(S
′)}

Exponential Weights

ω̂S = exp
{
−κ

2
MSC(S)

}/ ∑
S ′∈S

exp
{
−κ

2
MSC(S ′)

}

Minimum-AMSE Weights...
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Minimum AMSE-Averaging Estimator: OLS vs. TSLS

β̃(ω) = ωβ̂OLS + (1− ω)β̃TSLS

Under homoskedasticity:

ω∗ =

[
1 +

ABIAS(OLS)2

AVAR(TSLS)− AVAR(OLS)

]−1

Estimate by:

ω̂∗ =

[
1 +

max
{
0,
(
τ̂2 − σ̂2

ε σ̂
2
x

(
σ̂2
x/γ̂

2 − 1
))

/ σ̂4
x

}
σ̂2
ε (1/γ̂

2 − 1/σ̂2
x)

]−1

Where γ̂2 = n−1x′Z (Z ′Z )−1Z ′x
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Limit Distribution of Moment-Average Estimators

µ̂ =
∑
S∈S

ω̂S µ̂S

(i)
∑

S∈S ω̂S = 1 a.s.

(ii) ω̂(S)→d ϕS(τ,M) a.s.-continuous function of τ , M and

consistently-estimable constants only

√
n (µ̂− µ0)→d Λ(τ)

Λ(τ) = −∇θµ(θ0)
′

[∑
S∈S

ϕS(τ,M)KSΞS

](
M +

[
0

τ

])
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Simulating from the Limit Experiment

Suppose τ Known, Consistent Estimators of Everything Else

1. for j ∈ {1, 2, . . . , J}
(i) Mj

iid∼ Np+q

(
0, Ω̂

)
(ii) Λj(τ) = −∇θµ(θ̂)

′
[∑

S∈S ϕ̂S(Mj + τ)K̂SΞS

]
(Mj + τ)

2. Using {Λj(τ)}Jj=1 calculate â(τ), b̂(τ) such that

P
[
â(τ) ≤ Λ(τ) ≤ b̂(τ)

]
= 1− α

3. P
[
µ̂− b̂(τ)/

√
n ≤ µ0 ≤ µ̂− â(τ)/

√
n
]
≈ 1− α
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Two-step Procedure for Conservative Intervals

1. Construct 1− δ confidence region T (τ̂ , δ) for τ

2. For each τ∗ ∈ T (τ̂ , δ) calculate 1− α confidence interval[
â(τ∗), b̂(τ∗)

]
for Λ(τ∗) as descibed on previous slide.

3. Take the lower and upper bound over the resulting intervals:

âmin(τ̂) = minτ∗∈T â(τ∗), b̂max(τ̂∗) = maxτ∗∈T b̂(τ)

4. The interval

CIsim =

[
µ̂− b̂max(τ̂)√

n
, µ̂− âmin(τ̂)√

n

]

has asymptotic coverage of at least 1− (α+ δ)
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OLS versus TSLS Simulation

yi = 0.5xi + εi

xi = π(z1i + z2i + z3i ) + vi

(εi , vi , z1i , z2i , z3i ) ∼ iid N(0,S)

S =



1 ρ 0 0 0

ρ 1− π2 0 0 0

0 0 1/3 0 0

0 0 0 1/3 0

0 0 0 0 1/3



Var(x) = 1, ρ = Cor(x , ε), π2 = First-Stage R2
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Choosing Instrumental Variables Simulation

yi = 0.5xi + εi

xi = (z1i + z2i + z3i )/3 + γwi + vi

(εi , vi ,wi , zi1, z2i , z3i )
′ ∼ iid N(0,V)

V =



1 (0.5− γρ) ρ 0 0 0

(0.5− γρ) (8/9− γ2) 0 0 0 0

ρ 0 1 0 0 0

0 0 0 1/3 0 0

0 0 0 0 1/3 0

0 0 0 0 0 1/3



γ = Cor(x ,w), ρ = Cor(w , ε), First-Stage R2 = 1/9 + γ2

Var(x) = 1, Cor(x , ε) = 0.5
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Alternative Moment Selection Procedures

Downward J-test

Use Full instrument set unless J-test rejects.

Andrews (1999) – GMM Moment Selection Criteria

GMM-MSC(S) = Jn(S)− Bonus

Hall & Peixe (2003) – Canonical Correlations Info. Criterion

CCIC(S) = n log
[
1− R2

n(S)
]
+ Penalty

Penalty/Bonus Terms

Analogies to AIC, BIC, and Hannan-Quinn
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Empirical Example: Geography or Institutions?

Institutions Rule

Acemoglu et al. (2001), Rodrik et al. (2004), Easterly & Levine

(2003) – zero or negligible effects of “tropics, germs, and crops” in

income per capita, controlling for institutions.

Institutions Don’t Rule

Sachs (2003) – Large negative direct effect of malaria transmission

on income.

Carstensen & Gundlach (2006)

How robust is Sachs’s result?
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Carstensen & Gundlach (2006)

Both Regressors Endogenous

lnGDPCi = β1 + β2 · INSTITUTIONSi + β3 ·MALARIAi + εi

Robustness

I Various measures of INSTITUTIONS, MALARIA

I Various instrument sets

I β3 remains large, negative and significant.

2SLS for All Results That Follow
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Expand on Instrument Selection Exercise

FMSC and Corrected Confidence Intervals

1. FMSC – which instruments to estimate effect of malaria?

2. Correct CIs for Instrument Selection – effect of malaria still

negative and significant?

Measures of INSTITUTIONS and MALARIA

I rule – Average governance indicator (Kaufmann, Kray and

Mastruzzi; 2004)

I malfal – Proportion of population at risk of malaria

transmission in 1994 (Sachs, 2001)
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Instrument Sets

Baseline Instruments – Assumed Valid

I lnmort – Log settler mortality (per 1000), early 19th century

I maleco – Index of stability of malaria transmission

Further Instrument Blocks

Climate frost, humid, latitude

Europe eurfrac, engfrac

Openness coast, trade
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µ = malfal µ = rule

FMSC posFMSC µ̂ FMSC posFMSC µ̂

(1) Valid 3.0 3.0 −1.0 1.3 1.3 0.9

(2) Climate 3.1 3.1 −0.9 1.0 1.0 1.0

(3) Open 2.3 2.4 −1.1 1.2 1.2 0.8

(4) Eur 1.8 2.2 −1.1 0.5 0.7 0.9

(5) Climate, Eur 0.9 2.0 −1.0 0.3 0.6 0.9

(6) Climate, Open 1.9 2.3 −1.0 0.5 0.8 0.9

(7) Open, Eur 1.6 1.8 −1.2 0.8 0.8 0.8

(8) Full 0.5 1.7 −1.1 0.2 0.6 0.8

> 90% CI FMSC (−1.6,−0.6) (0.5, 1.2)

> 90% CI posFMSC (−1.6,−0.6) (0.6, 1.3)
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Lecture #7 – High-Dimensional Regression I

QR Decomposition

Singular Value Decomposition

Ridge Regression

Comparing OLS and Ridge
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QR Decomposition

Result

Any n × k matrix A with full column rank can be decomposed as

A = QR, where R is an k × k upper triangular matrix and Q is an

n × k matrix with orthonormal columns.

Notes

I Columns of A are orthogonalized in Q via Gram-Schmidt.

I Since Q has orthogonal columns, Q ′Q = Ik .

I It is not in general true that QQ ′ = I .

I If A is square, then Q−1 = Q ′.

Econ 722, Spring ’19 Lecture 7 – Slide 2



Different Conventions for the QR Decomposition

Thin aka Economical QR

Q is an n × k with orthonormal columns ( qr econ in Armadillo).

Thick QR

Q is an n × n orthogonal matrix.

Relationship between Thick and Thin

Let A = QR be the “thick” QR and A = Q1R1 be the “thin” QR:

A = QR = Q

[
R1

0

]
=
[
Q1 Q2

] [ R1

0

]
= Q1R1

My preferred convention is the thin QR. . .
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Least Squares via QR Decomposition

Let X = QR

β̂ = (X ′X )−1X ′y =
[
(QR)′(QR)

]−1
(QR)′y

=
[
R ′Q ′QR

]−1
R ′Q ′y = (R ′R)−1R ′Qy

= R−1(R ′)−1R ′Q ′y = R−1Q ′y

In other words, β̂ solves Rβ = Q ′y .

Why Bother?

Much easier and faster to solve Rβ = Q ′y than the normal

equations (X ′X )β = X ′y since R is upper triangular.
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Back-Substitution to Solve Rβ = Q ′y

The product Q ′y is a vector, call it v , so the system is simply

r11 r12 r13 · · · r1,n−1 r1k

0 r22 r23 · · · r2,n−1 r2k

0 0 r33 · · · r3,n−1 r3k
...

...
. . .

. . .
...

...

0 0 · · · 0 rk−1,k−1 rk−1,k

0 0 · · · 0 0 rk





β1

β2

β3
...

βk−1

βk


=



v1

v2

v3
...

vk−1

vk


βk = vk/rk ⇒ substitute this into βk−1rk−1,k−1 + βk rk−1,k = vk−1

to solve for βk−1, and so on.
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Calculating the Least Squares Variance Matrix σ2(X ′X )−1

I Since X = QR, (X ′X )−1 = R−1(R−1)′

I Easy to invert R: just apply repeated back-substitution:

I Let A = R−1 and aj be the jth column of A.

I Let ej be the jth standard basis vector.

I Inverting R is equivalent to solving Ra1 = e1, followed by

Ra2 = e2, . . . , Rak = ek .

I If you enclose a matrix in trimatu() or trimatl(), and

request the inverse ⇒ Armadillo will carry out backward or

forward substitution, respectively.
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QR Decomposition for Orthogonal Projections

Let X have full column rank and define PX = X (X ′X )−1X ′

PX = QR(R ′R)−1R ′Q ′ = QRR−1(R ′)−1R ′Q ′ = QQ ′

It is not in general true that QQ ′ = I even though Q ′Q = I since

Q need not be square in the economical QR decomposition.
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The Singular Value Decomposition (SVD)

Any m × n matrix A of arbitrary rank r can be written

A = UDV ′ = (orthogonal)(diagonal)(orthogonal)

I U = m×m orthog. matrix whose cols contain e-vectors of AA′

I V = n× n orthog. matrix whose cols contain e-vectors of A′A

I D = m × n matrix whose first r main diagonal elements are

the singular values d1, . . . , dr . All other elements are zero.

I The singular values d1, . . . , dr are the square roots of the

non-zero eigenvalues of A′A and AA′.

I (E-values of A′A and AA′ could be zero but not negative)
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SVD for Symmetric Matrices

If A is symmetric then A = QΛQ ′ where Λ is a diagonal matrix

containing the e-values of A and Q is an orthonormal matrix whose

columns are the corresponding e-vectors. Accordingly:

AA′ = (QΛQ ′)(QΛQ ′)′ = QΛQ ′QΛQ ′ = QΛ2Q ′

and similarly

A′A = (QΛQ ′)′(QΛQ ′) = QΛQ ′QΛQ ′ = QΛ2Q ′

using the fact that Q is orthogonal and Λ diagonal. Thus, when A

is symmetric the SVD reduces to U = V = Q and D =
√
Λ2 so

that negative eigenvalues become positive singular values.
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The Economical SVD

I Number of singular values is r = Rank(A) ≤ max{m, n}

I Some cols of U or V multiplied by zeros in D

I Economical SVD: only keep columns in U and V that are

multiplied by non-zeros in D (Armadillo: svd econ)

I Summation form: A =
r∑

i=1

diuiv
′
i where d1 ≤ d2 ≤ · · · ≤ dr

I Matrix form: A
(n×p)

= U
(n×r)

D
(r×r)

V ′
(r×p)

In the economical SVD, U and V may no longer be square, so they

are not orthogonal matrices but their columns are still orthonormal.
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Ridge Regression – OLS with an L2 Penalty

β̂Ridge = argmin
β

(y − Xβ)′(y − Xβ) + λβ′β

I Add a penalty for large coefficients

I λ = non-negative constant we choose: strength of penalty

I X and y assumed to be de-meaned (don’t penalize intercept)

I Unlike OLS, Ridge Regression is not scale invariant

I In OLS if we replace x1 with cx1 then β1 becomes β1/c .

I The same is not true for ridge regression!

I Typical to standardize X before carrying out ridge regression
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Alternative Formulation of Ridge Regression Problem

β̂Ridge = argmin
β

(y − Xβ)′(y − Xβ) subject to β′β ≤ t

I Ridge Regression is like least squares “on a budget.”

I Make one coefficient larger ⇒ must make another one smaller.

I One-to-one mapping from t to λ (data-dependent)
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Ridge as Bayesian Linear Regression

If we ignore the intercept, which is unpenalized, Ridge Regression

gives the posterior mode from the Bayesian regression model:

y |X , β, σ2 ∼ N(Xβ, σ2In)

β ∼ N(0, τ2Ip)

where σ2 is assumed known and λ = σ2/τ2. (In this example, the

posterior is normal so the mode equals the mean)

Econ 722, Spring ’19 Lecture 7 – Slide 13



Explicit Solution to the Ridge Regression Problem

Objective Function:

Q(β) = (y − Xβ)′(y − Xβ) + λβ′β

= y′y − β′Xy − y′Xβ + β′X ′Xβ + λβ′Ipβ

= y′y − 2y′Xβ + β′(X ′X + λIp)β

Recall the following facts about matrix differentiation

∂(a′x)/∂x = a, ∂(x′Ax)/∂x = (A+ A′)x

Thus, since (X ′X + λIp) is symmetric,

∂

∂β
Q(β) = −2X ′y + 2(X ′X + λIp)β
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Explicit Solution to the Ridge Regression Problem

Previous Slide:

∂

∂β
Q(β) = −2X ′y + 2(X ′X + λIp)β

First order condition:

X ′y = (X ′X + λIp)β

Hence,

β̂Ridge = (X ′X + λIp)
−1X ′y

But is (X ′X + λIp) guaranteed to be invertible?
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Ridge Regresion via OLS with “Dummy Observations”

Ridge regression solution is identical to

argmin
β

(
ỹ − X̃β

)′ (
ỹ − X̃β

)
where

ỹ =

[
y

0p

]
, X̃ =

[
X
√
λIp

]
since:

(
ỹ − X̃β

)′ (
ỹ − X̃β

)
=

[
(y − Xβ)′ (−

√
λβ)′

] [ (y − Xβ)

−
√
λβ

]
= (y − Xβ)′(y − Xβ) + λβ′β
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Ridge Regression Solution is Always Unique

Ridge solution is always unique, even if there are more regressors

than observations! This follows from the preceding slide:

β̂Ridge = argmin
β

(
ỹ − X̃β

)′ (
ỹ − X̃β

)

ỹ =

[
y

0p

]
, X̃ =

[
X
√
λIp

]

Columns of
√
λIp are linearly independent, so columns of X̃ are

also linearly independent, regardless of whether the same holds for

the columns of X .
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Efficient Calculations for Ridge Regression

QR Decomposition

Write Ridge as OLS with “dummy observations” with X̃ = QR so

β̂Ridge = (X̃ ′X̃ )−1X̃ ′ ỹ = R−1Q ′ ỹ

which we can obtain by back-solving the system Rβ̂Ridge = Q ′ ỹ.

Singular Value Decomposition

If p � n, it’s much faster to use the SVD rather than the QR

decomposition because the rank of X will be n. For

implementation details, see Murphy (2012; Section 7.5.2).
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Comparing Ridge and OLS

Assumption

Centered data matrix X
(n×p)

with rank p so OLS estimator is unique.

Economical SVD

I X
(n×p)

= U
(n×p)

D
(p×p)

V ′
(p×p)

with U ′U = V ′V = Ip, D diagonal

I Hence: X ′X = (UDV ′)′(UDV ′) = VDU ′UDV ′ = VD2V ′

I Since V is square it is an orthogonal matrix: VV ′ = Ip
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Comparing Ridge and OLS – The “Hat Matrix”

Using X = UDV ′ and the fact that V is orthogonal,

H(λ) = X
(
X ′X + λIp

)−1
X ′ = UDV ′ (VD2V + λVV ′)−1

VDU ′

= UDV ′ (VD2V ′ + λVV ′)−1
VDU ′

= UDV ′ [V (D2 + λIp)V
′]−1

VDU ′

= UDV ′ (V ′)−1 (
D2 + λIp

)−1
(V )−1 VDU ′

= UDV ′V
(
D2 + λIp

)−1
V ′VDU ′

= UD
(
D2 + λIp

)−1
DU ′
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Model Complexity of Ridge Versus OLS

OLS Case

Number of free parameters equals number of parameters p.

Ridge is more complicated

Even though there are p parameters they are constrained!

Idea: use trace of H(λ)

df(λ) = tr {H(λ)} = tr
{
X (X ′X + λIp)

−1X ′}
Why? Works for OLS: λ = 0

df(0) = tr {H(0)} = tr
{
X (X ′X )−1X ′} = p
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Effective Degrees of Freedom for Ridge Regression

Using cyclic permutation property of trace:

df(λ) = tr {H(λ)} = tr
{
X (X ′X + λIp)

−1X ′}
= tr

{
UD

(
D2 + λIp

)−1
DU ′

}
= tr

{
DU ′UD

(
D2 + λIp

)−1
}

= tr
{
D2
(
D2 + λIp

)−1
}

=

p∑
j=1

d2
j

d2
j + λ

I df(λ)→ 0 as λ→∞
I df(λ) = p when λ = 0

I df(λ) < p when λ > 0
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Comparing the MSE of OLS and Ridge

Assumptions

y = Xβ + ε, Fixed X , iid data, homoskedasticity

OLS Estimator: β̂

β̂ = (X ′X )−1X ′y =⇒ Bias(β̂) = 0 Var(β̂) = σ(X ′X )−1

Ridge Estimator: β̃λ

β̂λ = (X ′X + λI )−1X ′y =⇒ Bias(β̃λ) =? Var(β̃λ) =?
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Calculating The Bias of Ridge Regression
X fixed (or condition or X)

Bias(β̃λ) = E
[
(X ′X + λI )−1X ′(Xβ + ε)− β

]
= (X ′X + λI )−1X ′Xβ + (X ′X + λI )−1

E[X ′ε]︸ ︷︷ ︸
0

−β

= (X ′X + λI )−1
[
(X ′X + λI )β − λβ

]
− β

= β − λ(X ′X + λI )−1β − β

= −λ(X ′X + λI )−1β
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Calculating the Variance of Ridge Regression
X fixed (or condition or X)

Var(β̃λ) = Var
[
(X ′X + λI )−1X ′(Xβ + ε)

]
= Var

[
(X ′X + λI )−1X ′ε

]
= E

[{
(X ′X + λI )−1X ′ε

}{
(X ′X + λI )−1X ′ε

}′]
=
[
(X ′X + λI )−1X ′]

E[εε′]︸ ︷︷ ︸
σ2I

[
(X ′X + λI )−1X ′]′

= σ2(X ′X + λI )−1X ′X
(
X ′X + λI

)−1
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For λ Sufficiently Small, MSE(OLS)>MSE(Ridge)

MSE(β̂)−MSE(β̃λ) =
{
Bias2(β̂) + Var(β̂)

}
−

{
Bias2(β̃λ) + Var(β̃λ)

}
...

= λ (X ′X + λI )−1︸ ︷︷ ︸
M′

[
σ2

{
2I + λ(X ′X )−1

}
− λββ′]︸ ︷︷ ︸

A

(
X ′X + λI

)−1︸ ︷︷ ︸
M

I λ > 0 and M is symmetric

I M is full rank =⇒ Mv 6= 0 unless v = 0

I =⇒ v ′[λM ′AM]v = λ(Mv)′A(Mv)

I MSE(OLS) - MSE(Ridge) is PD iff M is PD

I To ensure M is PD, make λ small, e.g. 0 < λ < 2σ2/β′β
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Lecture #8 – High-Dimensional Regression II

LASSO
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Least Absolute Shrinkage and Selection Operator (LASSO)
Bühlmann & van de Geer (2011); Hastie, Tibshirani & Wainwright (2015)

Assume that X has been centered: don’t penalize intercept!

Notation

||β||22 =
∑p

j=1 β
2
j , ||β||1 =

∑p
j=1 |βj |

Ridge Regression – L2 Penalty

β̂Ridge = argmin
β

(y − Xβ)′(y − Xβ) + λ ||β||22

LASSO – L1 Penalty

β̂Lasso = argmin
β

(y − Xβ)′(y − Xβ) + λ ||β||1
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Other Ways of Thinking about LASSO

Constrained Optimization

argmin
β

(y − Xβ)′(y − Xβ) subject to
∑p

j=1 |βj | ≤ t

Data-dependent, one-to-one mapping between λ and t.

Bayesian Posterior Mode

Ignoring the intercept, LASSO is the posterior mode for β under

y|X , β, σ2 ∼ N(Xβ, σ2In), β ∼
p∏

j=1

Lap(βj |0, τ)

where λ = 1/τ and Lap(x |µ, τ) = (2τ)−1 exp
{
−τ−1|x − µ|

}
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Comparing Ridge and LASSO – Bayesian Posterior Modes
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Figure: Ridge, at left, puts a normal prior on β while LASSO, at right,

uses a Laplace prior, which has fatter tails and a taller peak at zero.
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Comparing LASSO and Ridge – Constrained OLS

Figure: β̂ denotes the MLE and the ellipses are the contours of the

likelihood. LASSO, at left, and Ridge, at right, both shrink β away from

the MLE towards zero. Because of its diamond-shaped constraint set,

however, LASSO favors a sparse solution while Ridge does not
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No Closed-Form for LASSO!

Simple Special Case

Suppose that X ′X = Ip

Maximum Likelihood

β̂MLE = (X ′X )−1X ′y = X ′y, β̂MLE
j =

∑n
i=1 xijyi

Ridge Regression

β̂Ridge = (X ′X + λIp)
−1X ′y = [(1 + λ)Ip]

−1
β̂MLE , β̂Ridge

j =
β̂MLE
j

1 + λ

So what about LASSO?
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LASSO when X ′X = Ip so β̂MLE = X ′y

Want to Solve

β̂LASSO = argmin
β

(y − Xβ)′(y − Xβ) + λ ||β||1

Expand First Term

(y − Xβ)′(y − Xβ) = y′y − 2β′X ′y + β′X ′Xβ

= (constant)− 2β′β̂MLE + β′β

Hence

β̂LASSO = argmin
β

(β′β − 2β′β̂MLE ) + λ ||β||1

= argmin
β

p∑
j=1

(
β2
j − 2βj β̂

MLE
j + λ |βj |

)
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LASSO when X ′X = Ip

Preceding Slide

β̂LASSO = argmin
β

p∑
j=1

(
β2
j − 2βj β̂

MLE
j + λ |βj |

)
Key Simplification

Equivalent to solving j independent optimization problems:

β̂Lasso
j = argmin

βj

(
β2
j − 2βj β̂

MLE
j + λ |βj |

)
I Sign of β2

j and λ|βj | unaffected by sign(βj)

I β̂MLE
j is a function of data only – outside our control

I Minimization requires matching sign(βj) to sign(β̂MLE
j )
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LASSO when X ′X = Ip

Case I: β̂MLE > 0 =⇒ βj > 0 =⇒ |βj | = βj

Optimization problem becomes

β̂Lasso
j = argmin

βj

β2
j − 2βj β̂

MLE
j + λβj

Interior solution:

β∗
j = β̂MLE

j − λ

2

Can’t have βj < 0: corner solution sets βj = 0

β̂Lasso
j = max

{
0, β̂MLE

j − λ

2

}
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LASSO when X ′X = Ip

Case II: β̂MLE ≤ 0 =⇒ βj ≤ 0 =⇒ |βj | = −βj

Optimization problem becomes

β̂Lasso
j = argmin

βj

β2
j − 2βj β̂

MLE
j − λβj

Interior solution:

β̂j = β̂MLE
j +

λ

2

Can’t have βj > 0: corner solution sets βj = 0

β̂Lasso
j = min

{
0, β̂MLE

j +
λ

2

}
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Ridge versus LASSO when X ′X = Ip
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Figure: Horizontal axis in each plot is MLE

β̂Ridge
j =

(
1

1 + λ

)
β̂MLE
j

β̂Lasso
j = sign

(
β̂MLE
j

)
max

{
0,
∣∣∣β̂MLE

j

∣∣∣− λ

2

}
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Calculating LASSO – The Shooting Algorithm
Cyclic Coordinate Descent

Data: y, X , λ ≥ 0, ε > 0

Result: LASSO Solution

β ← ridge(X , y, λ)

repeat
βprev ← β

for j = 1, . . . , p do

aj ← 2
∑

i x
2
ij

cj ← 2
∑

i xij(yi − x′iβ + βjxij)

βj ← sign(cj/aj)max {0, |cj/aj | − λ/aj}
end

until |β − βprev| < ε;
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Coordinate Updates in the Shooting Algorithm

∂

∂βj
(y − Xβ)′ (y − Xβ) = ajβj − cj

aj ≡ 2
n∑

i=1

x2ij

cj ≡ 2
n∑

i=1

xij
(
yi − x′iβ + βjxij︸ ︷︷ ︸
Residual excluding xij

)

βNew
j =


(cj + λ)/aj , cj < −λ

0, cj ∈ [−λ, λ]
(cj − λ)/aj , cj > λ
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Prediction Error of LASSO

Punchline

With the appropriate choice of λ, Lasso can make very good

predictions even when p is much larger than n, so long as∑p
j=1 |βj | is small.

Sparsity?

One way to have small
∑p

j=1 |βj | is if β is sparse, i.e. βj = 0 for

most j , but sparsity is not required.

We’ll look at a simple example. . .
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Prediction Error of LASSO: Simple Example

Suppose that:

I X and y are centered

I X is fixed and scaled so that x′jxj = n

I y = Xβ0 + ε, ε ∼ N(0, σ2I ).

I λ = cσ
√
log(p)/n where c is a constant

Theorem

Let β̂ = argmin
β

1
2n ‖y − Xβ‖22 + λ ‖β0‖1. Then,

P

(
1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
≤ 4λ ‖β0‖1

)
≥ 1− p−(c2/2−1)
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What Does This Mean?

P

(
1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
≤ 4λ ‖β0‖1

)
≥ 1− p−(c2/2−1)

Notation

‖z‖22 ≡ z′z, ‖α‖1 ≡
∑p

j=1 |αj |

Convenient Scaling

Divide RSS by 2n : β̂ = argmin
β

1

2n
‖y − Xβ‖22 + λ ‖β‖1

Prediction Error Comparison

Optimal: ε = y − Xβ0 Lasso: ε̂ = y − X β̂

1

n
‖ε̂− ε‖22 =

1

n

∥∥∥(y − X β̂)− (y − Xβ0)
∥∥∥2
2
=

1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
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What Does This Mean?

P

(
1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
≤ 4λ ‖β0‖1

)
≥ 1− p−(c2/2−1)

Recall

λ = cσ
√
log(p)/n, ε ∼ N(0, σ2I )

We choose c

Larger c =⇒ higher probability that the bound obtains:

c = 2 =⇒ 1− p−(c2/2−1) = 1− 1/p

c = 3 =⇒ 1− p−(c2/2−1) = 1− p−7/2

c = 4 =⇒ 1− p−(c2/2−1) = 1− p−7
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What Does This Mean?

P

(
1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
≤ 4λ ‖β0‖1

)
≥ 1− p−(c2/2−1)

Recall

λ = cσ
√
log(p)/n, ε ∼ N(0, σ2I )

We choose c

Larger c =⇒ looser bound:

c = 2 =⇒ 4λ ‖β0‖1 = 8σ
√
log(p)/n × ‖β0‖1

c = 3 =⇒ 4λ ‖β0‖1 = 12σ
√

log(p)/n × ‖β0‖1
c = 4 =⇒ 4λ ‖β0‖1 = 16σ

√
log(p)/n × ‖β0‖1
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We can allow p � n provided ‖β‖1 is small

P

(
1

n

∥∥∥Xβ0 − X β̂
∥∥∥2
2
≤ 4λ ‖β0‖1

)
≥ 1− p−(c2/2−1)

Recall

λ = cσ
√
log(p)/n, ε ∼ N(0, σ2I )

p n
√
log(p)/n

100 100 0.21

1000 1000 0.08

1000 100 0.26

10000 1000 0.10

10000 100 0.30

100000 1000 0.11
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Lecture #9 – High-Dimensional Regression III

Principal Component Analysis (PCA)

Principal Components Regression

Comparing OLS, Ridge, and PCR

Overview of Factor Models

Choosing the Number of Factors

Diffusion Index Forecasting
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Principal Component Analysis (PCA)

Notation

Let x be a p × 1 random vector with variance-covariance matrix Σ.

Optimization Problem

α1 = argmax
α

Var(α′x) subject to α′α = 1

First Principal Component

The linear combination α′
1x is the first principal component of x.

The random vector x has maximal variation in the direction α1.
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Solving for α1

Lagrangian

L(α1, λ) = α′Σα− λ(α′α− 1)

First Order Condition

2(Σα1 − λα1) = 0 ⇐⇒ (Σ− λIp)α1 = 0 ⇐⇒ Σα1 = λα1

Variance of 1st PC

α1 is an e-vector of Σ but which one? Substituting,

Var(α′
1x) = α′

1(Σα1) = λα′
1α1 = λ

Solution

Var. of 1st PC equals λ and this is what we want to maximize, so

α1 is the e-vector corresponding to the largest e-value.
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Subsequent Principal Components

Additional Constraint

Construct 2nd PC by solving the same problem as before with the

additional constraint that α′
2x is uncorrelated with α′

1x.

jth Principal Component

The linear combination α′
jx where αj is the e-vector corresponding

to the jth largest e-value of Σ.
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Sample PCA

Notation

X = (n × p) centered data matrix – columns are mean zero.

SVD

X = UDV ′, thus X ′X = VDU ′UDV ′ = VD2V ′

Sample Variance Matrix

S = n−1X ′X has same e-vectors as X ′X – the columns of V !

Sample PCA

Let vj be the jth column of V . Then,

vj = PC loadings for jth PC of S

v′jxi = PC score for individual/time period i
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Sample PCA

PC scores for jth PC

zj =


zj1
...

zjn

 =


v′jx1
...

v′jxn

 =


x′1vj
...

x′nvj

 =


x′1
...

x′n

 vj = Xvj

Getting PC Scores from SVD

Since X = UDV ′ and V ′V = I , XV = UD, i.e.
x′1
...

x′n

[ vi · · · vp

]
=
[
u1 · · · ur

]
d1 · · · 0

. . .

0 · · · dr


Hence we see that zj = djuj
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Properties of PC Scores zj

Since X has been de-meaned:

z̄j =
1

n

n∑
i=1

v′jxi = v′j

(
1

n

n∑
i=1

xi

)
= v′j0 = 0

Hence, since X ′X = VD2V ′

1

n

n∑
i=1

(zji−z̄j)2 =
1

n

n∑
i=1

z2ji =
1

n
z′jzj =

1

n
(Xvj)

′ (Xvj) = v′jSvj = d2
j /n
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Principal Components Regression (PCR)

1. Start with centered X and y.

2. SVD of X =⇒ PC scores: zj = Xvj = djuj .

3. Regress y on [ z1 . . . zm ] where m < p.

ŷPCR(m) =
m∑
j=1

zj θ̂j , θ̂j =
z′jy

z′jzj
(PCs orthogonal)

Standardizing X

Because PCR is not scale invariant, it is common to standardize X .

This amounts to PCA performed on a correlation matrix.
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Comparing PCR, OLS and Ridge Predictions

Assumption

Centered data matrix X
(n×p)

with rank p so OLS estimator is unique.

SVD

X
(n×p)

= U
(n×p)

D
(p×p)

V ′
(p×p)

, U ′U = V ′V = Ip, VV ′ = Ip

Ridge Predictions

ŷRidge(λ) = X β̂Ridge(λ) = X
(
X ′X + λIp

)−1
X ′y

=
[
UD

(
D2 + λIp

)−1
DU ′

]
y

=

p∑
j=1

(
d2
j

d2
j + λ

)
uju

′
jy
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Relating OLS and Ridge to PCR

Recall: U is Orthonormal

uju
′
jy = djuj

(
d2
j u

′
juj
)−1

dju
′
jy = zj(z

′
jzj)

−1z′jy = zj θ̂j

Substituting

ŷRidge(λ) =
m∑
j=1

(
d2
j

d2
j + λ

)
uju

′
jy =

m∑
j=1

(
d2
j

d2
j + λ

)
zj θ̂j

ŷOLS = ŷRidge(0) =

p∑
j=1

zj θ̂j
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Comparing PCR, OLS, and Ridge Predictions

ŷPCR(m) =
m∑
j=1

zj θ̂j , ŷOLS =

p∑
j=1

zj θ̂j , ŷRidge(λ) =
m∑
j=1

(
d2
j

d2
j + λ

)
zj θ̂j

I zj is the jth sample PC

I d2
j /n is the variance of the jth sample PC

I Ridge regresses y on sample PCs but shrinks predictions towards

zero: higher variance PCs are shrunk less.

I PCR truncates the PCs with the smallest variance.

I OLS neither shrinks nor truncates: is uses all the PCs.
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The Basic Idea

I (T × N) Matrix X of observations

I Xt contains a large number N of time series

I Comparable number T of time periods

I Can we “summarize” this information in some useful way?

I Forecasting and policy analysis applications

Survey Articles

Stock & Watson (2010), Bai & Ng (2008), Stock & Watson (2006)
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Example: Stock and Watson Dataset

Monthly Macroeconomic Indicators: N > 200,T > 400
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Classical Factor Analysis Model

Assume that Xt has been de-meaned. . .

Xt
(N×1)

= Λ Ft
(r×1)

+ εt

[
Ft

εt

]
iid∼ N

([
0

0

]
,

[
Ir 0

0 Ψ

])

Λ = matrix of factor loadings

Ψ = diagonal matrix of idiosyncratic variances.
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Adding Time-Dependence

Xt
(N×1)

= Λ Ft
(r×1)

+ εt

Ft
(r×1)

= A1Ft−1 + . . .+ ApFt−p + ut

[
ut

εt

]
iid∼ N

([
0

0

]
,

[
Ir 0

0 Ψ

])
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Terminology

Static Xt depends only on Ft

Dynamic Xt depends on lags of Ft as well

Exact Ψ is diagonal and εt independent over time

Approximate Some cross-sectional & temporal dependence in εt

The model I wrote down on the previous slide is sometimes called

an “exact, static factor model” even though Ft has dynamics.

Econ 722, Spring ’19 Lecture 9 – Slide 16



Some Caveats

1. Are “static” and “dynamic” really different?

I Can write dynamic model as a static one with more factors

I Static representation involves “different” factors, but we may

not care: are the factors “real” or just a data summary?

2. Can we really allow for cross-sectional dependence?

I Unless the off-diagonal elements of Ψ are close to zero we

can’t tell them apart from the common factors

I “Approximate” factor models basically assume conditions

under which the off-diagonal elements of Ψ are negligible

I Similarly, time series dependence in εt can’t be very strong

(stationary ARMA is ok)
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Methods of Estimation for Dynamic Factor Models

1. Bayesian Estimation

2. Maximum Likelihood: EM-Algorithm + Kalman Filter

I Watson & Engle (1983); Ghahramani & Hinton (1996); Jungbacker

& Koopman (2008); Doz, Giannone & Reichlin (2012)

3. “Nonparametric” Estimation via PCA

I PCA on the (T × N) matrix X , ignoring time dependence.

I The (r × 1) vector F̂t of PC scores associated with the first r

PCs are our estimate of Ft

I Essentially treats Ft as an r -dimensional parameter to be

estimated from an N-dimensional observation Xt
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Estimation by PCA

PCA Normalization

I F ′F/T = Ir where F = (F1, . . . ,FT )
′

I Λ′Λ = diag(µ1, . . . , µr ) where µ1 ≥ µ2 ≥ · · · ≥ µr

Assumption I

Factors are pervasive: Λ′Λ/N → DΛ an (r × r) full rank matrix.

Assumption II

max e-value E [εtε
′
t ] ≤ c ≤ ∞ for all N.

Upshot of the Assumptions

Average over the cross-section =⇒ contribution from the factors persists

while contribution from the idiosyncratic terms disappears as N →∞.
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Key Result for PCA Estimation

Under the assumptions on the previous slide and some other

technical conditions, the first r PCs of X consistently estimate the

space spanned by the factors as N,T →∞.
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Choosing the Number of Factors – Scree Plot

If we use PC estimation, we can look a something called a “scree

plot” to help us decide how many PCs to include:

This figure depicts the eigenvalues for an N = 1148,T = 252

dataset of excess stock returns
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Choosing the Number of Factors – Bai & Ng (2002)

Choose r to minimize an information criterion:

IC (r) = logVr (Λ̂, F̂ ) + r · g(N,T )

where

Vr (Λ,F ) =
1

NT

T∑
t=1

(Xt − ΛFt)
′(Xt − ΛFt)

and g is a penalty function. The paper provides conditions on the

penalty function that guarantee consistent estimation of the “true

number” of factors.
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Some Special Problems in High-dimensional Forecasting

Estimation Uncertainty

We’ve already seen that OLS can perform very badly if the number

of regressors is large relative to sample size.

Best Subsets Infeasible

With more than 30 or so regressors, we can’t check all subsets of

predictors making classical model selection problematic.

Noise Accumulation

Large N is supposed to help in factor models: averaging over the

cross-section gives a consistent estimator of factor space. This can

fail in practice, however, since it relies on the assumption that the

factors are pervasive. See Boivin & Ng (2006).
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Diffusion Index Forecasting – Stock & Watson (2002a,b)
JASA paper has the theory, JBES paper has macro forecasting example.

Basic Setup

Forecast scalar time series yt+1 using N-dimensional collection of

time series Xt where we observe periods t = 1, . . . ,T .

Assumption

Static representation of Dynamic Factor Model:

yt = β′Ft + γ(L)yt + εt+1

Xt = ΛFt + et

“Direct” Multistep Ahead Forecasts

“Iterated” forecast would be linear in Ft , yt and lags:

yht+h = αh + βh(L)Ft + γh(L)yt + εht+h

Econ 722, Spring ’19 Lecture 9 – Slide 24



This is really just PCR
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Diffusion Index Forecasting – Stock & Watson (2002a,b)

Estimation Procedure

1. Data Pre-processing

1.1 Transform all series to stationarity (logs or first difference)

1.2 Center and standardize all series

1.3 Remove outliers (ten times IQR from median)

1.4 Optionally augment Xt with lags

2. Estimate the Factors

I No missing observations: PCA on Xt to estimate F̂t

I Missing observations/Mixed-frequency: EM-algorithm

3. Fit the Forecasting Regression

I Regress yt on a constant and lags of F̂t and yt to estimate the

parameters of the “Direct” multistep forecasting regression.
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Diffusion Index Forecasting – Stock & Watson (2002b)

Recall from above that, under certain assumptions, PCA

consistently estimates the space spanned by the factors. Broadly

similar assumptions are at work here.

Main Theoretical Result

Moment restrictions on (ε, e,F ) plus a “rank condition” on Λ imply

that the MSE of the procedure on the previous slide converges to

that of the infeasible optimal procedure, provided that N,T →∞.
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Diffusion Index Forecasting – Stock & Watson (2002a)

Forecasting Experiment

I Simulated real-time forecasting of eight monthly macro

variables from 1959:1 to 1998:12

I Forecasting Horizons: 6, 12, and 24 months

I “Training Period” 1959:1 through 1970:1

I Predict h-steps ahead out-of-sample, roll and re-estimate.

I BIC to select lags and # of Factors in forecasting regression

I Compare Diffusion Index Forecasts to Benchmark

I AR only

I Factors only

I AR + Factors
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Diffusion Index Forecasting – Stock & Watson (2002a)

Empirical Results

I Factors provide a substantial improvement over benchmark

forecasts in terms of MSPE

I Six factors explain 39% of the variance in the 215 series;

twelve explain 53%

I Using all 215 series tends to work better than restricting to

balanced panel of 149 (PCA estimation)

I Augmenting Xt with lags isn’t helpful
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Lecture #10 – Selective Inference

Optimal Inference After Model Selection (Fithian et al., 2017)
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How Statistics is Done In Reality

Step 1: Selection – Decide what questions to ask.

“The analyst chooses a statistical model for the data at hand, and

formulates testing, estimation, or other problems in terms of

unknown aspects of that model.”

Step 2: Inference – Answer the Questions.

“The analyst investigates the chosen problems using the data and

the selected model.”

Problem – “Data-snooping”

Standard techniques for (frequentist) statistical inference assume

that we choose our questions before observing the data.
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Simple Example: “File Drawer Problem”

Yi ∼ iid N(µi , 1) for i = 1, . . . , n

I I want to know which µi 6= 0, but I’m busy and n is big.

I My RA looks at each Yi and finds the “interesting” ones,

namely Î = {i : |Yi | > 1}.

I I test H0,i : µi = 0 against the two-sided alternative at the 5%

significance level for each i ∈ Î.

Two Questions

1. What is the probability of falsely rejecting H0,i?

2. Among all H0,i that I test, what fraction are false rejections?
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Simple Example: “File Drawer Problem”

PH0,i ({Reject H0,i}) = PH0,i ({Test H0,i} ∩ {Reject H0,i})

= PH0,i ({Reject H0,i}|{Test H0,i})PH0,i ({Test H0,i})

= PH0,i ({|Yi | > 1.96}|{|Yi | > 1})PH0,i ({|Yi | > 1})

=
2Φ(−1.96)
2Φ(−1)

× 2Φ(−1)

≈ 0.16× 0.32 ≈ 0.05

PH0,i ({Reject H0,i}|{Test H0,i}) = PH0,i ({|Yi | > 1.96}|{|Yi | > 1})

=
Φ(−1.96)
Φ(−1)

≈ 0.16
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Simple Example: “File Drawer Problem”

Conditional vs. Unconditional Type I Error Rates

I The conditional probability of falsely rejecting H0,i , given that

I have tested it, is about 0.16.

I The unconditional probability of falsely rejecting H0,i is 0.05

since I only test a false null with probability 0.32.

Idea for Post-Selection Inference

Control the Type I Error Rate conditional on selection: “The

answer must be valid, given that the question was asked.”
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Simple Example: “File Drawer Problem”

Conditional Type I Error Rate

Solve PH0,i
({|Yi | > c}|{|Yi | > 1}) = 0.05 for c .

PH0,i
({|Yi | > c}|{|Yi | > 1}) = Φ(−c)

Φ(−1)
= 0.05

c = −Φ−1
(
Φ(−1)× 0.05

)
c ≈ 2.41

Notice:

To account for the first-stage selection step, we need a larger

critical value: 2.41 vs. 1.96. This means the test is less powerful.

Econ 722, Spring ’19 Lecture 10 – Slide 6



Selective Inference vs. Sample-Splitting

Classical Inference

Control the Type I error under model M: PM,H0(reject H0) ≤ α.

Selective Inference

Control the Type I error under model M, given that M and H0

were selected: PM,H0

(
reject H0|{M,H0 selected}

)
≤ α.

Sample-Splitting

Use different datasets to choose (M,H0) and carry out inference:

PM,H0

(
reject H0|{M,H0 selected}

)
= PM,H0(reject H0).
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Selective Inference in Exponential Family Models

Questions

1. Recipe for selective inference in realistic examples?

2. How to construct the “best” selective test in a given example?

3. How does selective inference compare to sample-splitting?

Fithian, Sun & Taylor (2017)

I Use classical theory for exponential family models (Lehmann & Scheffé).

I Computational procedure for UMPU selective test/CI after arbitrary

model/hypothesis selection.

I Sample-splitting is typically inadmissible (wastes information).

I Example: post-selection inference for high-dimensional regression
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A Prototype Example of Selective Inference
This is my own example, but uses the same idea that underlies Fithian et al.

I Choose between two models on a parameter δ.

I If δ 6= 0, choose M1; if δ = 0, choose M2

I E.g. δ is the endogeneity of X , M1 is IV and M2 is OLS

I Observe Yδ ∼ N(δ, σ2
δ) and use this to choose a model.

I Selection Event: A ≡ {|Yδ| > c}, for some critical value c

I If A, then choose M1. Otherwise, choose M2.

I After choosing a model, carry out inference for β.

I Under a particular model M, Yβ ∼ N(β, σ2
β)

I β is a model-specific parameter: could be meaningless or not even

exist under a different model.

I If Yβ and Yδ are correlated (under model M), we need to account for

conditioning on A when carrying out inference for β.

Econ 722, Spring ’19 Lecture 10 – Slide 9



All Calculations are Under a Given Model M

Key Idea

Under whichever model M ends up being selected, there is a joint

normal distribution for Yβ and Yδ without conditioning on A.

WLOG unit variances, ρ known

[
Yβ

Yδ

]
∼ N

([
β

δ

]
,

[
1 ρ

ρ 1

])
As long as we can consistently estimate the variances of Yβ and Yδ

along with their covariance, this is not a problem.
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Selective Inference in a Bivariate Normal Example[
Yβ

Yδ

]
∼ N

([
β

δ

]
,

[
1 ρ

ρ 1

])
, A ≡ {|Yδ| > c}

Two Cases

1. Condition on A occurring

2. Condition on A not occurring

Problem

If δ were known, we could directly calculate how conditioning on A

affects the distribution of Yβ , but δ is unknown!

Solution

Condition on a sufficient statistic for δ.
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Conditioning on a Sufficient Statistic

Theorem

If U is a sufficient statistic for δ, then the joint distribution of (Yβ ,Yδ)

given U does not depend on δ.

In Our Example

Residual U = Yδ−ρYβ from a projection of Yδ onto Yβ is sufficient for δ.

Straightforward Calculation

[
Yβ

Yδ

]∣∣∣∣∣ (U = u) =

[
β + Z

u + ρ(β + Z )

]
, Z ∼ N(0, 1)

Notice that this is a singular normal distribution
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The Distribution of Yβ|(A,U = u)

[
Yβ

Yδ

]∣∣∣∣∣ (U = u) =

[
β + Z

u + ρ(β + Z )

]
, Z ∼ N(0, 1)

Start with case in which A occurs so we select M1. Under H0 : β = β0,

Pβ0 (Yβ ≤ y |A,U = u) =
Pβ0({Yβ ≤ y} ∩ A|U = u)

Pβ0(A|U = u)

=
P ({Z ≤ y − β0} ∩ {|u + ρ(β0 + Z )| > c})

P (|u + ρ(β0 + Z )| > c)
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P(A|U = u) under H0 : β = β0

PD(A) ≡ Pβ0(A|U = u)

= P (|u + ρ(β0 + Z )| > c)

= P [u + ρ(β0 + Z ) > c] + P [u + ρ(β0 + Z ) < −c]

= P [ρ(β0 + Z ) > c − u] + P [u + ρ(β0 + Z ) < −c − u]

= 1− Φ

(
c − u

ρ
− β0

)
+Φ

(
−c − u

ρ
− β0

)
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P({Yβ ≤ y} ∩ A|U = u) under H0 : β = β0

PN(A) ≡ P({Yβ ≤ y} ∩ A|U = u)

= P ({Z ≤ y − β0} ∩ {|u + ρ(β0 + Z)| > c})

=


Φ(y − β0) , y < (−c − u)/ρ

Φ

(
−c − u

ρ
− β0

)
, (−c − u)/ρ ≤ y ≤ (c − u)/ρ

Φ(y − β0)− Φ

(
c − u

ρ
− β0

)
+Φ

(
−c − u

ρ
− β0

)
, y > (c − u)/ρ
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Fβ0
(y |A,U = u)

Define `(u) = (−c − u)/ρ, r(u) = (c − u)/ρ. We have:

Fβ0(y |A,U = u) = PN(A)/PD(A)

where

PD(A) ≡ 1− Φ(r(u)− β0) + Φ (`(u)− β0)

PN(A) ≡


Φ(y − β0) , y < `(u)

Φ (`(u)− β0) , `(u) ≤ y ≤ r(u)

Φ(y − β0)− Φ(r(u)− β0) + Φ (`(u)− β0) , y > r(u)

Note that Fβ0(y |A,U = u) has a flat region where `(u) ≤ y ≤ r(u)
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Qβ0
(p|A,U = u)

Inverting the CDF from the preceding slide:

Qβ0
(p|A,U = u) =

{
β0 +Φ−1 (p × PD(A)) , p < p∗

β0 +Φ−1 [p × PD(A) + Φ (r(u)− β0)− Φ(`(u)− β0)] , p ≥ p∗

where

p∗ ≡ Φ(`(u)− β0) /PD(A)

PD(A) ≡ 1− Φ(r(u)− β0) + Φ (`(u)− β0)

`(u) ≡ (−c − u)/ρ

r(u) ≡ (c − u)/ρ
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The Distribution of Yβ|(Ac ,U = u)

[
Yβ

Yδ

]∣∣∣∣∣ (U = u) =

[
β + Z

u + ρ(β + Z )

]
, Z ∼ N(0, 1)

If A does not occur, when we select M2. Under H0 : β = β0,

Pβ0 (Yβ ≤ y |Ac ,U = u) =
Pβ0({Yβ ≤ y} ∩ Ac |U = u)

Pβ0(A
c |U = u)

=
P ({Z ≤ y − β0} ∩ {|u + ρ(β0 + Z )| < c})

P (|u + ρ(β0 + Z )| < c)
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Fβ0
(y |Ac ,U = u)

As above, define `(u) = (−c − u)/ρ, r(u) = (c − u)/ρ. We have:

Fβ0(y |A
c ,U = u) = PN(A

c)/PD(A
c)

where

PD(A
c) ≡ Φ(r(u)− β0)− Φ(`(u)− β0)

PN(A
c) ≡


0, y < `(u)

Φ(y − β0)− Φ(`(u)− β0) , `(u) ≤ y ≤ r(u)

Φ (r(u)− β0)− Φ(`(u)− β0) , y > r(u)

Notice that this is a CDF with a bounded support set: y ∈ [`(u), r(u)]
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Qβ0
(p|Ac ,U = u)

Inverting the CDF from the preceding slide:

Qβ0(p|A
c ,U = u) = β0 +Φ−1 [p × PD(A

c) + Φ (`(u)− β0)]

where:

PD(A
c) ≡ Φ(r(u)− β0)− Φ(`(u)− β0)

`(u) ≡ (−c − u)/ρ

r(u) ≡ (c − u)/ρ
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Equal-tailed Selective Test

Conditional on A

1. Compute observed value u of U = Yδ − ρYβ (given A).

2. Compute qα/2 ≡ Qβ0(α/2|A,U = u)

3. q1−α/2 ≡ Qβ0(1− α/2|A,U = u)

4. Reject H0 : β = β0 if Yβ lies outside outside
[
qα/2, q1−α/2

]
.

Conditional on Ac

Same as above, but replace A with Ac in the preceding expressions.

Constructing a Confidence Interval

Simply invert the test: find the values of β0 that are not rejected.

Valid conditional on (U = u) =⇒ valid unconditionally!
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