Econ 722 - Advanced Econometrics IV

Francis J. DiTraglia
University of Pennsylvania

Lecture \#1 - Decision Theory

Statistical Decision Theory

The James-Stein Estimator

Decision Theoretic Preliminaries

Parameter $\theta \in \Theta$
Unknown state of nature, from parameter space Θ
Observed Data
Observe X with distribution F_{θ} from a sample space \mathcal{X}
Estimator $\widehat{\theta}$
An estimator (aka a decision rule) is a function from \mathcal{X} to Θ
Loss Function $L(\theta, \widehat{\theta})$
A function from $\Theta \times \Theta$ to \mathbb{R} that gives the cost we incur if we report $\widehat{\theta}$ when the true state of nature is θ.

Examples of Loss Functions

$$
\begin{array}{ll}
L(\theta, \widehat{\theta})=(\theta-\widehat{\theta})^{2} & \text { squared error loss } \\
L(\theta, \widehat{\theta})=|\theta-\widehat{\theta}| & \text { absolute error loss } \\
L(\theta, \widehat{\theta})=0 \text { if } \theta=\widehat{\theta}, 1 \text { otherwise } & \text { zero-one loss } \\
L(\theta, \widehat{\theta})=\int \log \left[\frac{f(x \mid \theta)}{f(x \mid \widehat{\theta})}\right] f(x \mid \theta) d x & \text { Kullback-Leibler loss }
\end{array}
$$

(Frequentist) Risk of an Estimator $\widehat{\theta}$

$$
R(\theta, \widehat{\theta})=\mathbb{E}_{\theta}[L(\theta, \widehat{\theta})]=\int L(\theta, \widehat{\theta}(x)) d F_{\theta}(x)
$$

The frequentist decision theorist seeks to evaulate, for each θ, how much he would "expect" to lose if he used $\widehat{\theta}(X)$ repeatedly with varying X in the problem.
(Berger, 1985)

Example: Squared Error Loss

$$
R(\theta, \widehat{\theta})=\mathbb{E}_{\theta}\left[(\theta-\widehat{\theta})^{2}\right]=\mathrm{MSE}=\operatorname{Var}(\widehat{\theta})+\operatorname{Bias}_{\theta}^{2}(\widehat{\theta})
$$

Bayes Risk and Maximum Risk

Comparing Risk
$R(\theta, \widehat{\theta})$ is a function of θ rather than a single number. We want an estimator with low risk, but how can we compare?

Maximum Risk

$$
\bar{R}(\widehat{\theta})=\sup _{\theta \in \Theta} R(\theta, \widehat{\theta})
$$

Bayes Risk

$$
r(\pi, \widehat{\theta})=\mathbb{E}_{\pi}[R(\theta, \widehat{\theta})], \text { where } \pi \text { is a prior for } \theta
$$

Bayes and Minimax Rules

Minimize the Maximum or Bayes risk over all estimators $\tilde{\theta}$

Minimax Rule/Estimator
$\widehat{\theta}$ is minimax if $\sup _{\theta \in \Theta} R(\theta, \widehat{\theta})=\inf _{\widetilde{\theta}} \sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})$

Bayes Rule/Estimator
$\widehat{\theta}$ is a Bayes rule with respect to prior π if

$$
r(\pi, \widehat{\theta})=\inf _{\widetilde{\theta}} r(\pi, \widetilde{\theta})
$$

Recall: Bayes' Theorem and Marginal Likelihood

Let π be a prior for θ. By Bayes' theorem, the posterior $\pi(\theta \mid \mathbf{x})$ is

$$
\pi(\theta \mid \mathbf{x})=\frac{f(\mathbf{x} \mid \theta) \pi(\theta)}{m(\mathbf{x})}
$$

where the marginal likelihood $m(\mathbf{x})$ is given by

$$
m(\mathbf{x})=\int f(\mathbf{x} \mid \theta) \pi(\theta) d \theta
$$

Posterior Expected Loss

Posterior Expected Loss

$\rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta})=\int L(\theta, \widehat{\theta}) \pi(\theta \mid \mathbf{x}) d \theta$
Bayesian Decision Theory
Choose an estimator that minimizes posterior expected loss.
Easier Calculation
Since $m(\mathbf{x})$ does not depend on θ, to minimize $\rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta})$ it suffices to minimize $\int L(\theta, \widehat{\theta}) f(\mathbf{x} \mid \theta) \pi(\theta) d \theta$.

Question

Is there a relationship between Bayes risk, $r(\pi, \widehat{\theta}) \equiv \mathbb{E}_{\pi}[R(\theta, \widehat{\theta})]$, and posterior expected loss?

Bayes Risk vs. Posterior Expected Loss

Theorem
$r(\pi, \widehat{\theta})=\int \rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta}(\mathbf{x})) m(\mathbf{x}) d \mathbf{x}$
Proof

$$
\begin{aligned}
r(\pi, \widehat{\theta}) & =\int R(\theta, \widehat{\theta}) \pi(\theta) d \theta=\int\left[\int L(\theta, \widehat{\theta}(\mathbf{x})) f(\mathbf{x} \mid \theta) d \mathbf{x}\right] \pi(\theta) d \theta \\
& =\iint L(\theta, \widehat{\theta}(\mathbf{x}))[f(\mathbf{x} \mid \theta) \pi(\theta)] d \mathbf{x} d \theta \\
& =\iint L(\theta, \widehat{\theta}(\mathbf{x}))[\pi(\theta \mid \mathbf{x}) m(\mathbf{x})] d \mathbf{x} d \theta \\
& =\int\left[\int L(\theta, \widehat{\theta}(\mathbf{x})) \pi(\theta \mid \mathbf{x}) d \theta\right] m(\mathbf{x}) d \mathbf{x} \\
& =\int \rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta}(\mathbf{x})) m(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Finding a Bayes Estimator

Hard Problem

Find the function $\widehat{\theta}(\mathbf{x})$ that minimizes $r(\pi, \widehat{\theta})$.

Easy Problem

Find the number $\widehat{\theta}$ that minimizes $\rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta})$
Punchline
Since $r(\pi, \widehat{\theta})=\int \rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta}(\mathbf{x})) m(\mathbf{x}) d \mathbf{x}$, to minimize $r(\pi, \widehat{\theta})$ we can set $\widehat{\theta}(\mathbf{x})$ to be the value $\widehat{\theta}$ that minimizes $\rho(\pi(\theta \mid \mathbf{x}), \widehat{\theta})$.

Bayes Estimators for Common Loss Functions

Zero-one Loss
For zero-one loss, the Bayes estimator is the posterior mode.
Absolute Error Loss: $L(\theta, \widehat{\theta})=|\theta-\widehat{\theta}|$
For absolute error loss, the Bayes estimator is the posterior median.
Squared Error Loss: $L(\theta, \widehat{\theta})=(\theta-\widehat{\theta})^{2}$
For squared error loss, the Bayes estimator is the posterior mean.

Derivation of Bayes Estimator for Squared Error Loss

By definition,

$$
\widehat{\theta} \equiv \underset{a \in \Theta}{\arg \min } \int(\theta-a)^{2} \pi(\theta \mid \mathbf{x}) d \theta
$$

Differentiating with respect to a, we have

$$
\begin{aligned}
2 \int(\theta-a) \pi(\theta \mid \mathbf{x}) d \theta & =0 \\
\int \theta \pi(\theta \mid \mathbf{x}) d \theta & =a
\end{aligned}
$$

Example: Bayes Estimator for a Normal Mean

Suppose $X \sim N(\mu, 1)$ and π is a $N\left(a, b^{2}\right)$ prior. Then,

$$
\begin{aligned}
\pi(\mu \mid x) & \propto f(x \mid \mu) \times \pi(\mu) \\
& \propto \exp \left\{-\frac{1}{2}\left[(x-\mu)^{2}+\frac{1}{b^{2}}(\mu-a)^{2}\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left[\left(1+\frac{1}{b^{2}}\right) \mu^{2}-2\left(x+\frac{a}{b^{2}}\right) \mu\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left(\frac{b^{2}+1}{b^{2}}\right)\left[\mu-\left(\frac{b^{2} x+a}{b^{2}+1}\right)\right]^{2}\right\}
\end{aligned}
$$

So $\pi(\mu \mid x)$ is $N\left(m, \omega^{2}\right)$ with $\omega^{2}=\frac{b^{2}}{1+b^{2}}$ and $m=\omega^{2} x+\left(1-\omega^{2}\right) a$.
Hence the Bayes estimator for μ under squared error loss is

$$
\widehat{\theta}(X)=\frac{b^{2} X+a}{1+b^{2}}
$$

Minimax Analysis

Wasserman (2004)

The advantage of using maximum risk, despite its problems, is that it does not require one to choose a prior.

Berger (1986)

Perhaps the greatest use of the minimax principle is in situations for which no prior information is available ...but two notes of caution should be sounded. First, the minimax principle can lead to bad decision rules. . . Second, the minimax approach can be devilishly hard to implement.

Methods for Finding a Minimax Estimator

1. Direct Calculation
2. Guess a "Least Favorable" Prior
3. Search for an "Equalizer Rule"

Method 1 rarely applicable so focus on 2 and $3 \ldots$

The Bayes Rule for a Least Favorable Prior is Minimax

Theorem

Let $\hat{\theta}$ be a Bayes rule with respect to π and suppose that for all $\theta \in \Theta$ we have $R(\theta, \widehat{\theta}) \leq r(\pi, \widehat{\theta})$. Then $\widehat{\theta}$ is a minimax estimator, and π is called a least favorable prior.

Proof

Suppose that $\widehat{\theta}$ is not minimax. Then there exists another estimator $\widetilde{\theta}$ with $\sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})<\sup _{\theta \in \Theta} R(\theta, \widehat{\theta})$. But since

$$
r(\pi, \widetilde{\theta}) \equiv \mathbb{E}_{\pi}[R(\theta, \widetilde{\theta})] \leq \mathbb{E}_{\pi}\left[\sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})\right]=\sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})
$$

but this implies that $\hat{\theta}$ is not Bayes with respect to π since

$$
r(\pi, \widetilde{\theta}) \leq \sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})<\sup _{\theta \in \Theta} R(\theta, \widehat{\theta}) \leq r(\pi, \widehat{\theta})
$$

Example of Least Favorable Prior

Bounded Normal Mean

- $X \sim N(\theta, 1)$
- Squared error loss
- $\Theta=[-m, m]$ for $0<m<1$

Least Favorable Prior

$\pi(\theta)=1 / 2$ for $\theta \in\{-m, m\}$, zero otherwise.

Resulting Bayes Rule is Minimax

$$
\widehat{\theta}(X)=m \tanh (m X)=m\left[\frac{\exp \{m X\}-\exp \{-m X\}}{\exp \{m X\}+\exp \{-m X\}}\right]
$$

Equalizer Rules

Definition

An estimator $\widehat{\theta}$ is called an equalizer rule if its risk function is constant: $R(\theta, \widehat{\theta})=C$ for some C.

Theorem
If $\widehat{\theta}$ is an equalizer rule and is Bayes with respect to π, then $\widehat{\theta}$ is minimax and π is least favorable.

Proof

$$
r(\pi, \widehat{\theta})=\int R(\theta, \widehat{\theta}) \pi(\theta) d \theta=\int C \pi(\theta) d \theta=C
$$

Hence, $R(\theta, \widehat{\theta}) \leq r(\pi, \widehat{\theta})$ for all θ so we can apply the preceding theorem.

Example: $X_{1}, \ldots, X_{n} \sim$ iid $\operatorname{Bernoulli}(p)$

Under a $\operatorname{Beta}(\alpha, \beta)$ prior with $\alpha=\beta=\sqrt{n} / 2$,

$$
\widehat{p}=\frac{n \bar{X}+\sqrt{n} / 2}{n+\sqrt{n}}
$$

is the Bayesian posterior mean, hence the Bayes rule under squared error loss. The risk function of \widehat{p} is,

$$
R(p, \widehat{p})=\frac{n}{4(n+\sqrt{n})^{2}}
$$

which is constant in p. Hence, \hat{p} is an equalizer rule, and by the preceding theorem is minimax.

Problems with the Minimax Principle

In the left panel, $\widetilde{\theta}$ is preferred by the minimax principle; in the right panel $\widehat{\theta}$ is preferred. But the only difference between them is that the right panel adds an additional fixed loss of 1 for $1 \leq \theta \leq 2$.

Problems with the Minimax Principle

Suppose that $\Theta=\left\{\theta_{1}, \theta_{2}\right\}, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and the loss function is:

	a_{1}	a_{2}
θ_{1}	10	10.01
θ_{2}	8	-8

- Minimax principle: choose a_{1}
- Bayes: Choose a_{2} unless $\pi\left(\theta_{1}\right)>0.9994$

Minimax ignores the fact that under θ_{1} we can never do better than a loss of 10 , and tries to prevent us from incurring a tiny additional loss of 0.01

Dominance and Admissibility

Dominance
$\widehat{\theta}$ dominates $\widetilde{\theta}$ with respect to R if $R(\theta, \widehat{\theta}) \leq R(\theta, \widetilde{\theta})$ for all $\theta \in \Theta$ and the inequality is strict for at least one value of θ.

Admissibility

$\widehat{\theta}$ is admissible if no other estimator dominates it.

Inadmissiblility

$\widehat{\theta}$ is inadmissible if there is an estimator that dominates it.

Example of an Admissible Estimator

Say we want to estimate θ from $X \sim N(\theta, 1)$ under squared error loss. Is the estimator $\widehat{\theta}(X)=3$ admissible?

If not, then there is a $\widetilde{\theta}$ with $R(\theta, \widetilde{\theta}) \leq R(\theta, \widehat{\theta})$ for all θ. Hence:

$$
R(3, \widetilde{\theta}) \leq R(3, \widehat{\theta})=\{\mathbb{E}[\widehat{\theta}-3]\}^{2}+\operatorname{Var}(\widehat{\theta})=0
$$

Since R cannot be negative for squared error loss,

$$
0=R(3, \widetilde{\theta})=\{\mathbb{E}[\widetilde{\theta}-3]\}^{2}+\operatorname{Var}(\widetilde{\theta})
$$

Therefore $\widehat{\theta}=\widetilde{\theta}$, so $\widehat{\theta}$ is admissible, although very silly!

Bayes Rules are Admissible

Theorem A-1

Suppose that Θ is a discrete set and π gives strictly positive probability to each element of Θ. Then, if $\widehat{\theta}$ is a Bayes rule with respect to π, it is admissible.

Theorem A-2
If a Bayes rule is unique, it is admissible.
Theorem A-3
Suppose that $R(\theta, \widehat{\theta})$ is continuous in θ for all $\widehat{\theta}$ and that π gives strictly positive probability to any open subset of Θ. Then if $\widehat{\theta}$ is a Bayes rule with respect to π, it is admissible.

Admissible Equalizer Rules are Minimax

Theorem

Let $\widehat{\theta}$ be an equalizer rule. Then if $\widehat{\theta}$ is admissible, it is minimax.

Proof

Since $\widehat{\theta}$ is an equalizer rule, $R(\theta, \widehat{\theta})=C$. Suppose that $\widehat{\theta}$ is not minimax. Then there is a $\widetilde{\theta}$ such that

$$
\sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})<\sup _{\theta \in \Theta} R(\theta, \widehat{\theta})=C
$$

But for any $\theta, R(\theta, \widetilde{\theta}) \leq \sup _{\theta \in \Theta} R(\theta, \widetilde{\theta})$. Thus we have shown that $\widetilde{\theta}$ dominates $\widehat{\theta}$, so that $\widehat{\theta}$ cannot be admissible.

Minimax Implies "Nearly" Admissible

Strong Inadmissibility
We say that $\widehat{\theta}$ is strongly inadmissible if there exists an estimator
$\widetilde{\theta}$ and an $\varepsilon>0$ such that $R(\theta, \widetilde{\theta})<R(\theta, \widehat{\theta})-\varepsilon$ for all θ.
Theorem
If $\widehat{\theta}$ is minimax, then it is not strongly inadmissible.

Example: Sample Mean, Unbounded Parameter Space

Theorem
Suppose that $X_{1}, \ldots, X_{n} \sim N(\theta, 1)$ with $\Theta=\mathbb{R}$. Under squared error loss, one can show that $\widehat{\theta}=\bar{X}$ is admissible.

Intuition

The proof is complicated, but effectively we view this estimator as a limit of a of Bayes estimator with prior $N\left(a, b^{2}\right)$, as $b^{2} \rightarrow \infty$.

Minimaxity
Since $R(\theta, \bar{X})=\operatorname{Var}(\bar{X})=1 / n$, we see that \bar{X} is an equalizer rule.
Since it is admissible, it is therefore minimax.

Recall: Gauss-Markov Theorem

Linear Regression Model

$$
\mathbf{y}=X \beta+\boldsymbol{\epsilon}, \quad \mathbb{E}[\boldsymbol{\epsilon} \mid X]=\mathbf{0}
$$

Best Linear Unbiased Estimator

- $\operatorname{Var}(\epsilon \mid X)=\sigma^{2} I \Rightarrow$ then OLS has lowest variance among linear, unbiased estimators of β.
- $\operatorname{Var}(\varepsilon \mid X) \neq \sigma^{2} I \Rightarrow$ then GLS gives a lower variance estimator.

What if we consider biased estimators and squared error loss?

Multiple Normal Means: $X \sim N(\theta, I)$

Goal

Estimate the p-vector θ using X with $L(\theta, \widehat{\theta})=\|\widehat{\theta}-\theta\|^{2}$.
Maximum Likelihood Estimator $\widehat{\theta}$
MLE $=$ sample mean, but only one observation: $\hat{\theta}=X$.
Risk of $\widehat{\theta}$

$$
(\hat{\theta}-\theta)^{\prime}(\hat{\theta}-\theta)=(X-\theta)^{\prime}(X-\theta)=\sum_{i=1}^{p}\left(X_{i}-\theta_{i}\right)^{2} \sim \chi_{p}^{2}
$$

Since $\mathbb{E}\left[\chi_{p}^{2}\right]=p$, we have $R(\theta, \hat{\theta})=p$.

Multiple Normal Means: $X \sim N(\theta, I)$

James-Stein Estimator

$$
\hat{\theta}^{J S}=\hat{\theta}\left(1-\frac{p-2}{\hat{\theta}^{\prime} \hat{\theta}}\right)=X-\frac{(p-2) X}{X^{\prime} X}
$$

- Shrinks components of sample mean vector towards zero
- More elements in $\theta \Rightarrow$ more shrinkage
- MLE close to zero ($\widehat{\theta^{\prime}} \widehat{\theta}$ small) gives more shrinkage

MSE of James-Stein Estimator

$$
\begin{aligned}
R\left(\theta, \hat{\theta}^{J S}\right)= & \mathbb{E}\left[\left(\hat{\theta}^{J S}-\theta\right)^{\prime}\left(\hat{\theta}^{J S}-\theta\right)\right] \\
= & \mathbb{E}\left[\left\{(X-\theta)-\frac{(p-2) X}{X^{\prime} X}\right\}^{\prime}\left\{(X-\theta)-\frac{(p-2) X}{X^{\prime} X}\right\}\right] \\
= & \mathbb{E}\left[(X-\theta)^{\prime}(X-\theta)\right]-2(p-2) \mathbb{E}\left[\frac{X^{\prime}(X-\theta)}{X^{\prime} X}\right] \\
& +(p-2)^{2} \mathbb{E}\left[\frac{1}{X^{\prime} X}\right] \\
= & p-2(p-2) \mathbb{E}\left[\frac{X^{\prime}(X-\theta)}{X^{\prime} X}\right]+(p-2)^{2} \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]
\end{aligned}
$$

Using fact that $R(\theta, \widehat{\theta})=p$

Simplifying the Second Term

Writing Numerator as a Sum

$$
\mathbb{E}\left[\frac{X^{\prime}(X-\theta)}{X^{\prime} X}\right]=\mathbb{E}\left[\frac{\sum_{i=1}^{p} X_{i}\left(X_{i}-\theta_{i}\right)}{X^{\prime} X}\right]=\sum_{i=1}^{p} \mathbb{E}\left[\frac{X_{i}\left(X_{i}-\theta_{i}\right)}{X^{\prime} X}\right]
$$

For $i=1, \ldots, p$

$$
\mathbb{E}\left[\frac{X_{i}\left(X_{i}-\theta_{i}\right)}{X^{\prime} X}\right]=\mathbb{E}\left[\frac{X^{\prime} X-2 X_{i}^{2}}{\left(X^{\prime} X\right)^{2}}\right]
$$

Not obvious: integration by parts, expectation as a p-fold integral, $X \sim N(\theta, I)$
Combining

$$
\begin{aligned}
\mathbb{E}\left[\frac{X^{\prime}(X-\theta)}{X^{\prime} X}\right] & =\sum_{i=1}^{p} \mathbb{E}\left[\frac{X^{\prime} X-2 X_{i}^{2}}{\left(X^{\prime} X\right)^{2}}\right]=p \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]-2 \mathbb{E}\left[\frac{\sum_{i=1}^{p} X_{i}^{2}}{\left(X^{\prime} X\right)^{2}}\right] \\
& =p \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]-2 \mathbb{E}\left[\frac{X^{\prime} X}{\left(X^{\prime} X\right)^{2}}\right]=(p-2) \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]
\end{aligned}
$$

The MLE is Inadmissible when $p \geq 3$

$$
\begin{aligned}
R\left(\theta, \hat{\theta}^{\prime S}\right) & =p-2(p-2)\left\{(p-2) \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]\right\}+(p-2)^{2} \mathbb{E}\left[\frac{1}{X^{\prime} X}\right] \\
& =p-(p-2)^{2} \mathbb{E}\left[\frac{1}{X^{\prime} X}\right]
\end{aligned}
$$

- $\mathbb{E}\left[1 /\left(X^{\prime} X\right)\right]$ exists and is positive whenever $p \geq 3$
- $(p-2)^{2}$ is always positive
- Hence, second term in the MSE expression is negative
- First term is MSE of the MLE

Therefore James-Stein strictly dominates MLE whenever $p \geq 3$!

James-Stein More Generally

- Our example was specific, but the result is general:
- MLE is inadmissible under quadratic loss in regression model with at least three regressors.
- Note, however, that this is MSE for the full parameter vector
- James-Stein estimator is also inadmissible!
- Dominated by "positive-part" James-Stein estimator:

$$
\widehat{\beta}^{J S}=\widehat{\beta}\left[1-\frac{(p-2) \hat{\sigma}^{2}}{\widehat{\beta}^{\prime} X^{\prime} X \widehat{\beta}}\right]_{+}
$$

- $\widehat{\beta}=$ OLS, $(x)_{+}=\max (x, 0), \widehat{\sigma}^{2}=$ usual OLS-based estimator
- Stops us us from shrinking past zero to get a negative estimate for an element of β with a small OLS estimate.
- Positive-part James-Stein isn't admissible either!

Lecture \#2 - Model Selection I

Kullback-Leibler Divergence

Bias of Maximized Sample Log-Likelihood

Review of Asymptotics for Mis-specified MLE

Deriving AIC and TIC

Corrected $\operatorname{AIC}\left(\mathrm{AIC}_{c}\right)$

Mallow's C_{p}

Kullback-Leibler (KL) Divergence

Motivation

How well does a given density $f(y)$ approximate an unknown true density $g(y)$? Use this to select between parametric models.

Definition

$$
\mathrm{KL}(g ; f)=\underbrace{\mathbb{E}_{G}\left[\log \left\{\frac{g(Y)}{f(Y)}\right\}\right]}_{\text {True density on top }}=\underbrace{\mathbb{E}_{G}[\log g(Y)]}_{\begin{array}{c}
\text { Depends only on truth } \\
\text { Fixed across models }
\end{array}}-\underbrace{\mathbb{E}_{G}[\log f(Y)]}_{\begin{array}{c}
\text { Expected } \\
\text { log-likelihood }
\end{array}}
$$

Properties

- Not symmetric: $\mathrm{KL}(g ; f) \neq \mathrm{KL}(f ; g)$
- By Jensen's Inequality: $\mathrm{KL}(g ; f) \geq 0$ (strict iff $g=f$ a.e.)
- Minimize KL \Longleftrightarrow Maximize Expected log-likelihood
$\mathrm{KL}(g ; f) \geq 0$ with equality iff $g=f$ almost surely
Jensen's Inequality
If φ is convex, then $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$, with strict equality when φ is affine or X is constant.
log is concave so $(-\log)$ is convex

$$
\begin{aligned}
\mathbb{E}_{G}\left[\log \left\{\frac{g(Y)}{f(Y)}\right\}\right] & =\mathbb{E}_{G}\left[-\log \left\{\frac{f(Y)}{g(Y)}\right\}\right] \geq-\log \left\{\mathbb{E}_{G}\left[\frac{f(Y)}{g(Y)}\right]\right\} \\
& =-\log \left\{\int_{-\infty}^{\infty} \frac{f(y)}{g(y)} \cdot g(y) d y\right\} \\
& =-\log \left\{\int_{-\infty}^{\infty} f(y) d y\right\} \\
& =-\log (1)=0
\end{aligned}
$$

KL Divergence and Mis-specified MLE

Pseudo-true Parameter Value θ_{0}

$$
\widehat{\theta}_{M L E} \xrightarrow[\rightarrow]{p} \theta_{0} \equiv \underset{\theta \in \Theta}{\arg \min } \mathrm{KL}\left(g ; f_{\theta}\right)=\underset{\theta \in \Theta}{\arg \max } \mathbb{E}_{G}[\log f(Y \mid \theta)]
$$

What if f_{θ} is correctly specified?
If $g=f_{\theta}$ for some θ then $\mathrm{KL}\left(g ; f_{\theta}\right)$ is minimized at zero.
Goal: Compare Mis-specified Models
$\mathbb{E}_{G}\left[\log f\left(Y \mid \theta_{0}\right)\right] \quad$ versus $\quad \mathbb{E}_{G}\left[\log h\left(Y \mid \gamma_{0}\right)\right]$
where θ_{0} is the pseudo-true parameter value for f_{θ} and γ_{0} is the pseudo-true parameter value for h_{γ}.

How to Estimate Expected Log Likelihood?

For simplicity: $Y_{1}, \ldots, Y_{n} \sim$ iid $g(y)$

Unbiased but Infeasible

$$
\mathbb{E}_{G}\left[\frac{1}{T} \ell\left(\theta_{0}\right)\right]=\mathbb{E}_{G}\left[\frac{1}{T} \sum_{t=1}^{T} \log f\left(Y_{t} \mid \theta_{0}\right)\right]=\mathbb{E}_{G}\left[\log f\left(Y \mid \theta_{0}\right)\right]
$$

Biased but Feasible
$T^{-1} \ell\left(\widehat{\theta}_{M L E}\right)$ is a biased estimator of $\mathbb{E}_{G}\left[\log f\left(Y \mid \theta_{0}\right)\right]$.
Intuition for the Bias
$T^{-1} \ell\left(\widehat{\theta}_{M L E}\right)>T^{-1} \ell\left(\theta_{0}\right)$ unless $\widehat{\theta}_{M L E}=\theta_{0}$. Maximized sample log-like. is an overly optimistic estimator of expected log-like.

What to do about this bias?

1. General-purpose asymptotic approximation of "degree of over-optimism" of maximized sample log-likelihood.

- Takeuchi's Information Criterion (TIC)
- Akaike's Information Criterion (AIC)

2. Problem-specific finite sample approach, assuming $g \in f_{\theta}$.

- Corrected $\operatorname{AIC}\left(\mathrm{AIC}_{c}\right)$ of Hurvich and Tsai (1989)

Tradeoffs

TIC is most general and makes weakest assumptions, but requires very large T to work well. AIC is a good approximation to TIC that requires less data. Both AIC and TIC perform poorly when T is small relative to the number of parameters, hence AIC_{c}.

Recall: Asymptotics for Mis-specified ML Estimation

 Model $f(y \mid \theta)$, pseudo-true parameter θ_{0}. For simplicity $Y_{1}, \ldots, Y_{T} \sim$ iid $g(y)$.Fundamental Expansion

$$
\begin{gathered}
\sqrt{T}\left(\hat{\theta}-\theta_{0}\right)=J^{-1}\left(\sqrt{T} \bar{U}_{T}\right)+o_{p}(1) \\
J=-\mathbb{E}_{G}\left[\frac{\partial \log f\left(Y \mid \theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right], \quad \bar{U}_{T}=\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(Y_{t} \mid \theta_{0}\right)}{\partial \theta}
\end{gathered}
$$

Central Limit Theorem

$$
\begin{gathered}
\sqrt{T} \bar{U}_{T} \rightarrow_{d} U \sim N_{p}(0, K), \quad K=\operatorname{Var}_{G}\left[\frac{\partial \log f\left(Y \mid \theta_{0}\right)}{\partial \theta}\right] \\
\sqrt{T}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} J^{-1} U \sim N_{p}\left(0, J^{-1} K J^{-1}\right)
\end{gathered}
$$

Information Matrix Equality
If $g=f_{\theta}$ for some $\theta \in \Theta$ then $K=J \Longrightarrow \operatorname{AVAR}(\widehat{\theta})=J^{-1}$

Bias Relative to Infeasible Plug-in Estimator

Definition of Bias Term B

$$
B=\underbrace{\frac{1}{T} \ell(\widehat{\theta})}_{\begin{array}{c}
\text { feasible. } \\
\text { overly-optimistic }
\end{array}}-\underbrace{\int g(y) \log f(y \mid \widehat{\theta}) d y}_{\begin{array}{c}
\text { Uses data only once } \\
\text { infeas. not overly-optimistic }
\end{array}}
$$

Question to Answer
On average, over the sampling distribution of $\widehat{\theta}$, how large is B ?
AIC and TIC construct an asymptotic approximation of $\mathbb{E}[B]$.

Derivation of AIC/TIC

Step 1: Taylor Expansion

$$
\begin{gathered}
B=\bar{Z}_{T}+\left(\widehat{\theta}-\theta_{0}\right)^{\prime} J\left(\widehat{\theta}-\theta_{0}\right)+o_{p}\left(T^{-1}\right) \\
\bar{Z}_{T}=\frac{1}{T} \sum_{t=1}^{T}\left\{\log f\left(Y_{t} \mid \theta_{0}\right)-\mathbb{E}_{G}\left[\log f\left(Y \mid \theta_{0}\right)\right\}\right.
\end{gathered}
$$

Step 2: $\mathbb{E}\left[\bar{Z}_{T}\right]=0$

$$
\mathbb{E}[B] \approx \mathbb{E}\left[\left(\hat{\theta}-\theta_{0}\right)^{\prime} J\left(\hat{\theta}-\theta_{0}\right)\right]
$$

Step 3: $\sqrt{T}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} J^{-1} U$

$$
T\left(\widehat{\theta}-\theta_{0}\right)^{\prime} J\left(\hat{\theta}-\theta_{0}\right) \rightarrow_{d} U^{\prime} J^{-1} U
$$

Derivation of AIC/TIC Continued. . .

Step 3: $\sqrt{T}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} J^{-1} U$

$$
T\left(\widehat{\theta}-\theta_{0}\right)^{\prime} J\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} U^{\prime} J^{-1} U
$$

Step 4: $U \sim N_{p}(0, K)$

$$
\mathbb{E}[B] \approx \frac{1}{T} \mathbb{E}\left[U^{\prime} J^{-1} U\right]=\frac{1}{T} \operatorname{tr}\left\{J^{-1} K\right\}
$$

Final Result:
$T^{-1} \operatorname{tr}\left\{J^{-1} K\right\}$ is an asymp. unbiased estimator of the over-optimism of $T^{-1} \ell(\widehat{\theta})$ relative to $\int g(y) \log f(y \mid \widehat{\theta}) d y$.

TIC and AIC

Takeuchi's Information Criterion
Multiply by $2 T$, estimate $J, K \Rightarrow$ TIC $=2\left[\ell(\widehat{\theta})-\operatorname{tr}\left\{\widehat{J}^{-1} \widehat{K}\right\}\right]$
Akaike's Information Criterion
If $g=f_{\theta}$ then $J=K \Rightarrow \operatorname{tr}\left\{J^{-1} K\right\}=p \Rightarrow \operatorname{AIC}=2[\ell(\widehat{\theta})-p]$
Contrasting AIC and TIC
Technically, AIC requires that all models under consideration are at least correctly specified while TIC doesn't. But $J^{-1} K$ is hard to estimate, and if a model is badly mis-specified, $\ell(\widehat{\theta})$ dominates.

Corrected $\operatorname{AIC}\left(\mathrm{AIC}_{c}\right)$ - Hurvich \& Tsai (1989)

 Idea Behind AlC_{c}Asymptotic approximation used for AIC/TIC works poorly if p is too large relative to T. Try exact, finite-sample approach instead.

Assumption: True DGP

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}_{0}+\varepsilon, \quad \varepsilon \sim N\left(\mathbf{0}, \sigma_{0}^{2} \mathbf{I}_{T}\right), \quad k \text { Regressors }
$$

Can Show That
$K L(g, f)=\frac{T}{2}\left[\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}-\log \left(\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}\right)-1\right]+\left(\frac{1}{2 \sigma_{1}^{2}}\right)\left(\boldsymbol{\beta}_{0}-\boldsymbol{\beta}_{1}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\boldsymbol{\beta}_{0}-\boldsymbol{\beta}_{1}\right)$
Where f is a normal regression model with parameters ($\boldsymbol{\beta}_{1}, \sigma_{1}^{2}$) that might not be the true parameters.

But how can we use this?

$K L(g, f)=\frac{T}{2}\left[\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}-\log \left(\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}\right)-1\right]+\left(\frac{1}{2 \sigma_{1}^{2}}\right)\left(\boldsymbol{\beta}_{0}-\boldsymbol{\beta}_{1}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\boldsymbol{\beta}_{0}-\boldsymbol{\beta}_{1}\right)$

1. Would need to know ($\beta_{1}, \sigma_{1}^{2}$) for candidate model.

- Easy: just use MLE ($\widehat{\boldsymbol{\beta}}_{1}, \widehat{\sigma}_{1}^{2}$)

2. Would need to know $\left(\boldsymbol{\beta}_{0}, \sigma_{0}^{2}\right)$ for true model.

- Very hard! The whole problem is that we don't know these!

Hurvich \& Tsai (1989) Assume:

- Every candidate model is at least correctly specified
- Implies any candidate estimator $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$ is consistent for truth.

Deriving the Corrected AIC

Since $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$ are random, look at $\mathbb{E}[\widehat{K L}]$, where

$$
\widehat{K L}=\frac{T}{2}\left[\frac{\sigma_{0}^{2}}{\widehat{\sigma}^{2}}-\log \left(\frac{\sigma_{0}^{2}}{\widehat{\sigma}^{2}}\right)-1\right]+\left(\frac{1}{2 \widehat{\sigma}^{2}}\right)\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)
$$

Finite-sample theory for correctly spec. normal regression model:

$$
\mathbb{E}[\widehat{K L}]=\frac{T}{2}\left\{\frac{T+k}{T-k-2}-\log \left(\sigma_{0}^{2}\right)+\mathbb{E}\left[\log \widehat{\sigma}^{2}\right]-1\right\}
$$

Eliminate constants and scaling, unbiased estimator of $\mathbb{E}\left[\log \widehat{\sigma}^{2}\right]$:

$$
\mathrm{AIC}_{c}=\log \widehat{\sigma}^{2}+\frac{T+k}{T-k-2}
$$

a finite-sample unbiased estimator of KL for model comparison

Motivation: Predict y from x via Linear Regression

$$
\begin{aligned}
\underset{(T \times 1)}{\mathbf{y}} & =\underset{(T \times K)}{\mathbf{X}} \underset{(K \times 1)}{\boldsymbol{\beta}}+\boldsymbol{\epsilon} \\
\mathbb{E}[\boldsymbol{\epsilon} \mid \mathbf{X}] & =0, \quad \operatorname{Var}(\boldsymbol{\epsilon} \mid \mathbf{X})=\sigma^{2} \mathbf{I}
\end{aligned}
$$

- If $\boldsymbol{\beta}$ were known, could never achieve lower MSE than by using all regressors to predict.
- But $\boldsymbol{\beta}$ is unknown so we have to estimate it from data \Rightarrow bias-variance tradeoff.
- Could make sense to exclude regressors with small coefficients: add small bias but reduce variance.

Operationalizing the Bias-Variance Tradeoff Idea

Mallow's C_{p}

Approximate the predictive MSE of each model relative to the infeasible optimum in which $\boldsymbol{\beta}$ is known.

Notation

- Model index m and regressor matrix \mathbf{X}_{m}
- Corresponding OLS estimator $\widehat{\boldsymbol{\beta}}_{m}$ padded out with zeros
- $\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}=\mathbf{X}_{(-m)} \mathbf{0}+\mathbf{X}_{m}\left[\left(\mathbf{X}_{m}^{\prime} \mathbf{X}_{m}\right)^{-1} \mathbf{X}_{m}^{\prime}\right] \mathbf{y}=\mathbf{P}_{m} \mathbf{y}$

In-sample versus Out-of-sample Prediction Error

Why not compare $\operatorname{RSS}(m)$?
In-sample prediction error: $\operatorname{RSS}(m)=\left(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}\right)^{\prime}\left(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}\right)$
From your Problem Set
RSS cannot decrease even if we add irrelevant regressors. Thus in-sample prediction error is an overly optimistic estimate of out-of-sample prediction error.

Bias-Variance Tradeoff

Out-of-sample performance of full model (using all regressors) could be very poor if there is a lot of estimation uncertainty associated with regressors that aren't very predictive.

Predictive MSE of $\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}$ relative to infeasible optimum $\boldsymbol{X} \beta$

Step 1: Algebra

$$
\begin{aligned}
\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}-\mathbf{X} \boldsymbol{\beta} & =\mathbf{P}_{m} \mathbf{y}-\mathbf{X} \boldsymbol{\beta}=\mathbf{P}_{m}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})-\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
& =\mathbf{P}_{m} \boldsymbol{\epsilon}-\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

Step 2: \mathbf{P}_{m} and $\left(\mathbf{I}-\mathbf{P}_{m}\right)$ are both symmetric and idempotent, and orthogonal to each other

$$
\begin{aligned}
\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}-\mathbf{X} \boldsymbol{\beta}\right\|^{2}= & \left\{\mathbf{P}_{m} \boldsymbol{\epsilon}-\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}\right\}^{\prime}\left\{\mathbf{P}_{m} \boldsymbol{\epsilon}+\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}\right\} \\
= & \epsilon^{\prime} \mathbf{P}_{m}^{\prime} \mathbf{P}_{m} \boldsymbol{\epsilon}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right)^{\prime} \mathbf{P}_{m} \boldsymbol{\epsilon}-\boldsymbol{\epsilon}^{\prime} \mathbf{P}_{m}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
& \quad+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right)\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
= & \epsilon^{\prime} \mathbf{P}_{m} \boldsymbol{\epsilon}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

Predictive MSE of $\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}$ relative to infeasible optimum $\boldsymbol{X} \boldsymbol{\beta}$

Step 3: Expectation of Step 2 conditional on \mathbf{X}

$$
\begin{aligned}
\operatorname{MSE}(m \mid \mathbf{X}) & =\mathbb{E}\left[\left(\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}-\mathbf{X} \boldsymbol{\beta}\right)^{\prime}\left(\mathbf{X} \widehat{\boldsymbol{\beta}}_{m}-\mathbf{X} \boldsymbol{\beta}\right) \mid \mathbf{X}\right] \\
& =\mathbb{E}\left[\epsilon^{\prime} \mathbf{P}_{m} \epsilon \mid \mathbf{X}\right]+\mathbb{E}\left[\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \mid \mathbf{X}\right] \\
& =\mathbb{E}\left[\operatorname{tr}\left\{\epsilon^{\prime} \mathbf{P}_{m} \epsilon\right\} \mid \mathbf{X}\right]+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
& =\operatorname{tr}\left\{\mathbb{E}\left[\epsilon \epsilon^{\prime} \mid \mathbf{X}\right] \mathbf{P}_{m}\right\}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
& =\operatorname{tr}\left\{\sigma^{2} \mathbf{P}_{m}\right\}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta} \\
& =\sigma^{2} k_{m}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

where k_{m} denotes the number of regressors in \mathbf{X}_{m} and $\operatorname{tr}\left(\mathbf{P}_{m}\right)=$ $\operatorname{tr}\left\{\mathbf{X}_{m}\left(\mathbf{X}_{m}^{\prime} \mathbf{X}_{m}\right)^{-1} \mathbf{X}_{m}^{\prime}\right\}=\operatorname{tr}\left\{\mathbf{X}_{m}^{\prime} \mathbf{X}_{m}\left(\mathbf{X}_{m}^{\prime} \mathbf{X}_{m}\right)^{-1}\right\}=\operatorname{tr}\left(\mathbf{I}_{m}\right)=k_{m}$

Now we know the MSE of a given model...

$$
\operatorname{MSE}(m \mid \mathbf{X})=\sigma^{2} k_{m}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}
$$

Bias-Variance Tradeoff

- Smaller Model $\Rightarrow \sigma^{2} k_{m}$ smaller: less estimation uncertainty.
- Bigger Model $\Rightarrow \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X}=\left\|\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X}\right\|^{2}$ is in general smaller: less (squared) bias.

Mallow's C_{p}

- Problem: MSE formula is infeasible since it involves $\boldsymbol{\beta}$ and σ^{2}.
- Solution: Mallow's C_{p} constructs an unbiased estimator.
- Idea: what about plugging in $\widehat{\boldsymbol{\beta}}$ to estimate second term?

What if we plug in $\widehat{\boldsymbol{\beta}}$ to estimate the second term?

For the missing algebra in Step 4, see the lecture notes.

Notation

Let $\widehat{\boldsymbol{\beta}}$ denote the full model estimator and \mathbf{P} be the corresponding projection matrix: $\mathbf{X} \widehat{\beta}=\mathbf{P y}$.

Crucial Fact
$\operatorname{span}\left(\mathbf{X}_{m}\right)$ is a subspace of $\operatorname{span}(\mathbf{X})$, so $\mathbf{P}_{m} \mathbf{P}=\mathbf{P} \mathbf{P}_{m}=\mathbf{P}_{m}$.
Step 4: Algebra using the preceding fact
$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \widehat{\boldsymbol{\beta}} \mid \mathbf{X}\right]=\cdots=\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}+\mathbb{E}\left[\boldsymbol{\epsilon}^{\prime}\left(\mathbf{P}-\mathbf{P}_{m}\right) \boldsymbol{\epsilon} \mid \mathbf{X}\right]$

Substituting $\widehat{\boldsymbol{\beta}}$ doesn't work. .

Step 5: Use "Trace Trick" on second term from Step 4

$$
\begin{aligned}
\mathbb{E}\left[\epsilon^{\prime}\left(\mathbf{P}-\mathbf{P}_{m}\right) \epsilon \mid \mathbf{X}\right] & =\mathbb{E}\left[\operatorname{tr}\left\{\epsilon^{\prime}\left(\mathbf{P}-\mathbf{P}_{m}\right) \boldsymbol{\epsilon}\right\} \mid \mathbf{X}\right] \\
& =\operatorname{tr}\left\{\mathbb{E}\left[\boldsymbol{\epsilon} \epsilon^{\prime} \mid \mathbf{X}\right]\left(\mathbf{P}-\mathbf{P}_{m}\right)\right\} \\
& =\operatorname{tr}\left\{\sigma^{2}\left(\mathbf{P}-\mathbf{P}_{m}\right)\right\} \\
& =\sigma^{2}\left(\operatorname{trace}\{\mathbf{P}\}-\operatorname{trace}\left\{\mathbf{P}_{m}\right\}\right) \\
& =\sigma^{2}\left(K-k_{m}\right)
\end{aligned}
$$

where K is the total number of regressors in \mathbf{X}
Bias of Plug-in Estimator

$$
\mathbb{E}\left[\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \widehat{\boldsymbol{\beta}} \mid \mathbf{X}\right]=\underbrace{\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}}_{\text {Truth }}+\underbrace{\sigma^{2}\left(K-k_{m}\right)}_{\text {Bias }}
$$

Putting Everything Together: Mallow's C_{p}

Want An Unbiased Estimator of This:

$$
\operatorname{MSE}(m \mid \mathbf{X})=\sigma^{2} k_{m}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}
$$

Previous Slide:

$$
\mathbb{E}\left[\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \widehat{\boldsymbol{\beta}} \mid \mathbf{X}\right]=\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \boldsymbol{\beta}+\sigma^{2}\left(K-k_{m}\right)
$$

End Result:

$$
\begin{aligned}
\mathrm{MC}(m) & =\widehat{\sigma}^{2} k_{m}+\left[\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \widehat{\boldsymbol{\beta}}-\widehat{\sigma}^{2}\left(K-k_{m}\right)\right] \\
& =\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{P}_{m}\right) \mathbf{X} \widehat{\boldsymbol{\beta}}+\widehat{\sigma}^{2}\left(2 k_{m}-K\right)
\end{aligned}
$$

is an unbiased estimator of MSE, with $\widehat{\sigma}^{2}=\mathbf{y}^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{y} /(T-K)$

Why is this different from the textbook formula?

Just algebra, but tedious. . .

$$
\begin{aligned}
\mathrm{MC}(m)-2 \widehat{\sigma}^{2} k_{m} & =\widehat{\beta}^{\prime} X^{\prime}\left(\mathbf{I}-P_{M}\right) X \widehat{\beta}-K \widehat{\sigma}^{2} \\
& \vdots \\
& =\mathbf{y}^{\prime}\left(\mathbf{I}-P_{M}\right) \mathbf{y}-T \widehat{\sigma}^{2} \\
& =\operatorname{RSS}(m)-T \widehat{\sigma}^{2}
\end{aligned}
$$

Therefore:

$$
\mathrm{MC}(m)=\operatorname{RSS}(m)+\widehat{\sigma}^{2}\left(2 k_{m}-T\right)
$$

Divide Through by $\hat{\sigma}^{2}$:

$$
C_{p}(m)=\frac{\mathrm{RSS}(m)}{\hat{\sigma}^{2}}+2 k_{m}-T
$$

Tells us how to adjust RSS for number of regressors...

Lecture \#3 - Model Selection II

Bayesian Model Comparison

Bayesian Information Criterion (BIC)

K-fold Cross-validation

Asymptotic Equivalence Between LOO-CV and TIC

Bayesian Model Comparison: Marginal Likelihoods

Bayes' Theorem for Model $m \in \mathcal{M}$

$$
\begin{aligned}
\underbrace{\pi(\boldsymbol{\theta} \mid \mathbf{y}, m)}_{\text {Posterior }} & \propto \underbrace{\pi(\boldsymbol{\theta} \mid m)}_{\text {Prior }} \underbrace{f(\mathbf{y} \mid \boldsymbol{\theta}, m)}_{\text {Likelihood }} \\
\underbrace{f(\mathbf{y} \mid m)}_{\text {Marginal Likelihood }} & =\int_{\Theta} \pi(\boldsymbol{\theta} \mid m) f(\mathbf{y} \mid \boldsymbol{\theta}, m) \mathrm{d} \boldsymbol{\theta}
\end{aligned}
$$

Posterior Model Probability for $m \in \mathcal{M}$
$P(m \mid \mathbf{y})=\frac{P(m) f(\mathbf{y} \mid m)}{f(\mathbf{y})}=\frac{\int_{\Theta} P(m) f(\mathbf{y}, \boldsymbol{\theta} \mid m) \mathrm{d} \boldsymbol{\theta}}{f(\mathbf{y})}=\frac{P(m)}{f(\mathbf{y})} \int_{\Theta} \pi(\boldsymbol{\theta} \mid m) f(\mathbf{y} \mid \boldsymbol{\theta}, m) \mathrm{d} \boldsymbol{\theta}$
where $P(m)$ is the prior model probability and $f(\mathbf{y})$ is constant across models.

Laplace (aka Saddlepoint) Approximation

Suppress model index m for simplicity.
General Case: for T large. . .

$$
\begin{gathered}
\int_{\Theta} g(\boldsymbol{\theta}) \exp \{T \cdot h(\boldsymbol{\theta})\} \mathrm{d} \boldsymbol{\theta} \approx\left(\frac{2 \pi}{T}\right)^{p / 2} \exp \left\{T \cdot h\left(\boldsymbol{\theta}_{0}\right)\right\} g\left(\boldsymbol{\theta}_{0}\right)\left|H\left(\boldsymbol{\theta}_{0}\right)\right|^{-1 / 2} \\
p=\operatorname{dim}(\boldsymbol{\theta}), \quad \boldsymbol{\theta}_{0}=\arg \max _{\boldsymbol{\theta} \in \Theta} h(\boldsymbol{\theta}), \quad H\left(\theta_{0}\right)=-\left.\frac{\partial^{2} h(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}
\end{gathered}
$$

Use to Approximate Marginal Likelihood
$h(\theta)=\frac{\ell(\boldsymbol{\theta})}{T}=\frac{1}{T} \sum_{t=1}^{T} \log f\left(Y_{i} \mid \boldsymbol{\theta}\right), \quad H(\boldsymbol{\theta})=J_{T}(\boldsymbol{\theta})=-\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} \log f\left(Y_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}, \quad g(\boldsymbol{\theta})=\pi(\boldsymbol{\theta})$
and substitute $\widehat{\boldsymbol{\theta}}_{\text {MLE }}$ for $\boldsymbol{\theta}_{0}$

Laplace Approximation to Marginal Likelihood

Suppress model index m for simplicity.

$$
\begin{gathered}
\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y} \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx\left(\frac{2 \pi}{T}\right)^{p / 2} \exp \left\{\ell\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\right\} \pi\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\left|J_{T}\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\right|^{-1 / 2} \\
\ell(\boldsymbol{\theta})=\sum_{t=1}^{T} \log f\left(Y_{i} \mid \boldsymbol{\theta}\right), \quad H(\boldsymbol{\theta})=J_{T}(\boldsymbol{\theta})=-\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} \log f\left(Y_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}
\end{gathered}
$$

Bayesian Information Criterion

$$
f(y \mid m)=\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y} \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx\left(\frac{2 \pi}{T}\right)^{p / 2} \exp \left\{\ell\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\right\} \pi\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\left|J_{T}\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)\right|^{-1 / 2}
$$

Take Logs and Multiply by 2
$2 \log f(\mathbf{y} \mid m) \approx \underbrace{2 \ell\left(\widehat{\boldsymbol{\theta}}_{M L E}\right)}_{O_{p}(T)}-\underbrace{p \log (T)}_{O(\log T)}+\underbrace{p \log (2 \pi)+2 \log \pi(\widehat{\theta})-\log \left|J_{T}(\widehat{\boldsymbol{\theta}})\right|}_{O_{p}(1)}$
The BIC
Assume uniform prior over models and ignore lower order terms:

$$
\operatorname{BIC}(m)=2 \log f(\mathbf{y} \mid \widehat{\boldsymbol{\theta}}, m)-p_{m} \log (T)
$$

large-sample Frequentist approx. to Bayesian marginal likelihood

Model Selection using a Hold-out Sample

- The real problem is double use of the data: first for estimation, then for model comparison.
- Maximized sample log-likelihood is an overly optimistic estimate of expected log-likelihood and hence KL-divergence
- In-sample squared prediction error is an overly optimistic estimator of out-of-sample squared prediction error
- AIC/TIC, $\mathrm{AIC}_{c}, \mathrm{BIC}, C_{p}$ penalize sample log-likelihood or RSS to compensate.
- Another idea: don't re-use the same data!

Hold-out Sample: Partition the Full Dataset

Unfortunately this is extremely wasteful of data...

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 1

Randomly partition full dataset into K folds of approx. equal size.

Step 2

Treat $k^{\text {th }}$ fold as a hold-out sample and estimate model using all observations except those in fold k : yielding estimator $\widehat{\theta}(-k)$.

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 2

Treat $k^{\text {th }}$ fold as a hold-out sample and estimate model using all observations except those in fold k : yielding estimator $\widehat{\theta}(-k)$.

Step 3
Repeat Step 2 for each $k=1, \ldots, K$.
Step 4
For each t calculate the prediction $\widehat{y}_{t}^{-k(t)}$ of y_{t} based on $\widehat{\theta}(-k(t))$, the estimator that excluded observation t.

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 4

For each t calculate the prediction $\widehat{y}_{t}^{-k(t)}$ of y_{t} based on $\widehat{\theta}(-k(t))$, the estimator that excluded observation t.

Step 5

Define $\mathrm{CV}_{K}=\frac{1}{T} \sum_{t=1}^{T} L\left(y_{t}, \widehat{y}_{t}^{-k(t)}\right)$ where L is a loss function.

Step 5

Repeat for each model \& choose m to minimize $\mathrm{CV}_{K}(m)$.
CV uses each observation for parameter estimation and model evaluation but never at the same time!

Cross-Validation (CV): Some Details

Which Loss Function?

- For regression squared error loss makes sense
- For classification (discrete prediction) could use zero-one loss.
- Can also use log-likelihood/KL-divergence as a loss function...

How Many Folds?

- One extreme: $K=2$. Closest to Training/Test idea.
- Other extreme: $K=T$ Leave-one-out CV (LOO-CV).
- Computationally expensive model \Rightarrow may prefer fewer folds.
- If your model is a linear smoother there's a computational trick that makes LOO-CV extremely fast. (Problem Set)
- Asymptotic properties are related to $K \ldots$

Relationship between LOO-CV and TIC

Theorem
LOO-CV using KL-divergence as the loss function is asymptotically equivalent to TIC but doesn't require us to estimate the Hessian and variance of the score.

Large-sample Equivalence of LOO-CV and TIC

Notation and Assumptions

For simplicity let $Y_{1}, \ldots, Y_{T} \sim$ iid. Let $\widehat{\theta}_{(t)}$ be the maximum
likelihood estimator based on all observations except t and $\widehat{\theta}$ be the full-sample estimator.

Log-likelihood as "Loss"
$\mathrm{CV}_{1}=\frac{1}{T} \sum_{t=1}^{T} \log f\left(y_{t} \mid \widehat{\theta}_{(t)}\right)$ but since min. $\mathrm{KL}=$ max. log-like. we choose the model with highest $\mathrm{CV}_{1}(m)$.

Overview of the Proof

First-Order Taylor Expansion of $\log f\left(y_{t} \mid \widehat{\theta}_{(t)}\right)$ around $\widehat{\theta}$:

$$
\begin{aligned}
C V_{1} & =\frac{1}{T} \sum_{t=1}^{T} \log f\left(y_{t} \mid \widehat{\theta}_{(t)}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T}\left[\log f\left(y_{t} \mid \widehat{\theta}\right)+\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)\right]+o_{p}(1) \\
& =\frac{\ell(\widehat{\theta})}{T}+\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)+o_{p}(1)
\end{aligned}
$$

Why isn't the first-order term zero in this case?

Important Side Point

Definition of ML Estimator

$$
\frac{\partial \ell(\widehat{\theta})}{\partial \theta^{\prime}}=\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}=0
$$

In Contrast

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right) & =\left[\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}} \widehat{\theta}_{(t)}\right]-\widehat{\theta}\left[\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\right] \\
& =\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}} \widehat{\theta}_{(t)} \neq 0
\end{aligned}
$$

Overview of Proof

From expansion two slides back, we simply need to show that:

$$
\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)=-\frac{1}{T} \operatorname{tr}\left(\widehat{\jmath}^{-1} \widehat{K}\right)+o_{p}(1)
$$

$$
\begin{aligned}
& \widehat{K}=\frac{1}{T} \sum_{t=1}^{T}\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)^{\prime} \\
& \widehat{J}=-\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta \partial \theta^{\prime}}
\end{aligned}
$$

Overview of Proof

By the definition of \widehat{K} and the properties of the trace operator:

$$
\begin{aligned}
-\frac{1}{T} \operatorname{tr}\left\{\hat{J}^{-1} \widehat{K}\right\} & =-\frac{1}{T} \operatorname{tr}\left\{\hat{J}^{-1}\left[\frac{1}{T} \sum_{t=1}^{T}\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)^{\prime}\right]\right\} \\
& =\left[\frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}\left\{\frac{-\hat{J}^{-1}}{T}\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)\left(\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right)^{\prime}\right\}\right] \\
& =\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta^{\prime}}\left(-\frac{1}{T} \widehat{J}^{-1}\right) \frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}
\end{aligned}
$$

So it suffices to show that

$$
\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)=-\frac{1}{T} \widehat{\jmath}^{-1}\left[\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right]+o_{p}(1)
$$

What is an Influence Function?

Statistical Functional

$\mathbb{T}=\mathbb{T}(G)$ maps a CDF G to \mathbb{R}^{p}.
Example: ML Estimation

$$
\theta_{0}=\mathbb{T}(G)=\underset{\theta \in \Theta}{\arg \min } E_{G}\left[\log \left\{\frac{g(Y)}{f(Y \mid \theta)}\right\}\right]
$$

Influence Function

Let δ_{y} be the CDF of a point mass at $y: \delta_{y}(a)=\mathbb{1}\{y \leq a\}$. Influence function $=$ functional derivative: how does a small change in G affect \mathbb{T} ?

$$
\operatorname{infl}(G, y)=\lim _{\epsilon \rightarrow 0} \frac{\mathbb{T}\left[(1-\epsilon) G+\epsilon \delta_{y}\right]-\mathbb{T}(G)}{\epsilon}
$$

Relating Influence Functions to $\widehat{\theta}_{(t)}$

Empirical CDF \widehat{G}

$$
\widehat{G}(a)=\frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\left\{y_{t} \leq a\right\}=\frac{1}{T} \sum_{t=1}^{T} \delta_{y_{t}}(a)
$$

Relation to "LOO" Empirical CDF $\widehat{G}_{(t)}$

$$
\widehat{G}=\left(1-\frac{1}{T}\right) \widehat{G}_{(t)}+\frac{\delta_{y_{t}}}{T}
$$

Applying \mathbb{T} to both sides. . .

$$
\mathbb{T}(\widehat{G})=\mathbb{T}\left((1-1 / T) \widehat{G}_{(t)}+\delta_{y_{t}} / T\right)
$$

Relating Influence Functions to $\widehat{\theta}_{(t)}$

Some algebra, followed by taking $\varepsilon=1 / T$ to zero gives:

$$
\begin{aligned}
\mathbb{T}(\widehat{G}) & =\mathbb{T}\left((1-1 / T) \widehat{G}_{(t)}+\delta_{y_{t}} / T\right) \\
\mathbb{T}(\widehat{G})-\mathbb{T}\left(\widehat{G}_{(t)}\right) & =\mathbb{T}\left((1-1 / T) \widehat{G}_{(t)}+\delta_{y_{t}} / T\right)-\mathbb{T}\left(\widehat{G}_{(t)}\right) \\
\mathbb{T}(\widehat{G})-\mathbb{T}\left(\widehat{G}_{(t)}\right) & =\frac{1}{T}\left[\frac{\mathbb{T}\left((1-1 / T) \widehat{G}_{(t)}+\delta_{y_{t}} / T\right)-\mathbb{T}\left(\widehat{G}_{(t)}\right)}{1 / T}\right] \\
\mathbb{T}(\widehat{G})-\mathbb{T}\left(\widehat{G}_{(t)}\right) & =\frac{1}{T} \operatorname{infl}\left(\widehat{G}_{(t)}, y_{t}\right)+o_{p}(1) \\
\widehat{\theta}-\widehat{\theta}_{(t)} & =\frac{1}{T} \operatorname{infl}\left(\widehat{G}, y_{t}\right)+o_{p}(1)
\end{aligned}
$$

Last step: difference between having \widehat{G} vs. $\widehat{G}_{(t)}$ in infl is negligible

Steps for Last part of TIC/LOO-CV Equivalence Proof

Step 1

Let \widehat{G} denote the empirical CDF based on y_{1}, \ldots, y_{T}. Then:

$$
\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)=-\frac{1}{T} \operatorname{infl}\left(\widehat{G}, y_{t}\right)+o_{p}(1)
$$

Step 2

Lecture Notes: For ML, infl $(G, y)=J^{-1} \frac{\partial}{\partial \theta} \log f\left(y \mid \theta_{0}\right)$.
Step 3
Evaluating Step 2 at \widehat{G} and substituting into Step 2

$$
\left(\widehat{\theta}_{(t)}-\widehat{\theta}\right)=-\frac{1}{T} \hat{\jmath}^{-1}\left[\frac{\partial \log f\left(y_{t} \mid \widehat{\theta}\right)}{\partial \theta}\right]+o_{p}(1)
$$

Lecture \#4 - Asymptotic Properties

Overview

Weak Consistency

Consistency

Efficiency

AIC versus BIC in a Simple Example

Overview

Asymptotic Properties
What happens as the sample size increases?
Consistency
Choose "best" model with probability approaching 1 in the limit.

Efficiency

Post-model selection estimator with low risk.

Some References

Sin and White (1992, 1996), Pötscher (1991), Leeb \& Pötscher (2005), Yang (2005) and Yang (2007).

Penalizing the Likelihood

Examples we've seen:

$$
\begin{aligned}
& T I C=2 \ell_{T}(\widehat{\theta})-2 \operatorname{trace}\left\{\hat{J}^{-1} \widehat{K}\right\} \\
& A I C=2 \ell_{T}(\widehat{\theta})-2 \text { length }(\theta) \\
& B I C=2 \ell_{T}(\widehat{\theta})-\log (T) \text { length }(\theta)
\end{aligned}
$$

Generic penalty $c_{T, k}$

$$
I C\left(M_{k}\right)=2 \sum_{t=1}^{T} \log f_{k, t}\left(Y_{t} \mid \widehat{\theta}_{k}\right)-c_{T, k}
$$

How does choice of $c_{T, k}$ affect behavior of the criterion?

Weak Consistency: Suppose $\mathrm{M}_{k_{0}}$ Uniquely Minimizes KL

Assumption

$$
\liminf _{T \rightarrow \infty}\left(\min _{k \neq k_{0}} \frac{1}{T} \sum_{t=1}^{T}\left\{K L\left(g ; f_{k, t}\right)-K L\left(g ; f_{k_{0}, t}\right)\right\}\right)>0
$$

Consequences

- Any criterion with $c_{T, k}>0$ and $c_{T, k}=o_{p}(T)$ is weakly consistent: selects $\mathrm{M}_{k_{0}}$ wpa 1 in the limit.
- Weak consistency still holds if $c_{T, k}$ is zero for one of the models, so long as it is strictly positive for all the others.

Both AIC and BIC are Weakly Consistent

Both satisfy $T^{-1} c_{T, k} \xrightarrow{p} 0$.

BIC Penalty: $\quad c_{T, k}=\log (T) \times$ length $\left(\theta_{k}\right)$
AIC Penalty: $\quad c_{T, k}=2 \times \operatorname{length}\left(\theta_{k}\right)$

Consistency: No Unique KL-minimizer

Example

If the truth is an $\operatorname{AR}(5)$ model then $\operatorname{AR}(6), \operatorname{AR}(7), \operatorname{AR}(8)$, etc. models all have zero KL-divergence.

Principle of Parsimony
Among the KL-minimizers, choose the simplest model, i.e. the one with the fewest parameters.

Notation

$\mathcal{J}=$ be the set of all models that attain minimum KL-divergence $\mathcal{J}_{0}=$ subset with the minimum number of parameters.

Sufficient Conditions for Consistency

Consistency: Select Model from \mathcal{J}_{0} wpa 1

$$
\lim _{T \rightarrow \infty} \mathbb{P}\left\{\min _{\ell \in \mathcal{J} \backslash \mathcal{J}_{0}}\left[I C\left(M_{j_{0}}\right)-I C\left(M_{\ell}\right)\right]>0\right\}=1
$$

Sufficient Conditions
(i) For all $k \neq \ell \in \mathcal{J}$

$$
\sum_{t=1}^{T}\left[\log f_{k, t}\left(Y_{t} \mid \theta_{k}^{*}\right)-\log f_{\ell, t}\left(Y_{t} \mid \theta_{\ell}^{*}\right)\right]=O_{p}(1)
$$

where θ_{k}^{*} and θ_{ℓ}^{*} are the KL minimizing parameter values.
(ii) For all $j_{0} \in \mathcal{J}_{0}$ and $\ell \in\left(\mathcal{J} \backslash \mathcal{J}_{0}\right)$

$$
P\left(c_{T, \ell}-c_{T, j_{0}} \rightarrow \infty\right)=1
$$

BIC is Consistent; AIC and TIC Are Not

- AIC and TIC cannot satisfy (ii) since ($c_{T, \ell}-c_{T, j_{0}}$) does not depend on sample size.
- It turns out that AIC and TIC are not consistent.
- BIC is consistent:

$$
c_{T, \ell}-c_{T, j_{0}}=\log (T)\left\{\text { length }\left(\theta_{\ell}\right)-\text { length }\left(\theta_{j_{0}}\right)\right\}
$$

- Term in braces is positive since $\ell \in \mathcal{J} \backslash \mathcal{J}_{0}$, i.e. ℓ is not as parsimonious as j_{0}
- $\log (T) \rightarrow \infty$, so BIC always selects a model in \mathcal{J}_{0} in the limit.

Efficiency: Risk Properties of Post-selection Estimator

Setup

- Models M_{0} and M_{1}; corresponding estimators $\widehat{\theta}_{0, T}$ and $\widehat{\theta}_{1, T}$
- Model Selection: If $\widehat{M}=0$ choose M_{0}; if $\widehat{M}=1$ choose M_{1}.

Post-selection Estimator

$$
\widehat{\theta}_{\widehat{M}, T} \equiv \mathbf{1}_{\{\widehat{M}=0\}} \widehat{\theta}_{0, T}+\mathbf{1}_{\{\widehat{M}=1\}} \widehat{\theta}_{1, T}
$$

Two Sources of Randomness
Variability in $\widehat{\theta}_{\widehat{M}, T}$ arises both from $\left(\widehat{\theta}_{0, T}, \widehat{\theta}_{1, T}\right)$ and from \widehat{M}.

Question

How does the risk of $\widehat{\theta}_{\widehat{M}, T}$ compare to that of other estimators?

Efficiency: Risk Properties of Post-selection Estimator

Pointwise-risk Adaptivity
$\widehat{\theta}_{\widehat{M}, T}$ is pointwise-risk adaptive if for any fixed $\theta \in \Theta$,

$$
\frac{R\left(\theta, \widehat{\theta}_{\widehat{M}, T}\right)}{\min \left\{R\left(\theta, \widehat{\theta}_{0, T}\right), R\left(\theta, \widehat{\theta}_{1, T}\right)\right\}} \rightarrow 1, \quad \text { as } T \rightarrow \infty
$$

Minimax-rate Adaptivity
$\widehat{\theta}_{\widehat{M}, T}$ is minimax-rate adaptive if

$$
\sup _{T}\left[\frac{\sup _{\theta \in \Theta} R\left(\theta, \widehat{\theta}_{\widehat{M}, T}\right)}{\inf _{\widetilde{\theta}_{T}} \sup _{\theta \in \Theta} R\left(\theta, \widetilde{\theta}_{T}\right)}\right]<\infty
$$

The Strengths of AIC and BIC Cannot be Shared

Theorem
No model post-model selection estimator can be both pointwise-risk adaptive and minimax-rate adaptive.

AIC vs. BIC

- BIC is pointwise-risk adaptive but AIC is not. (This is effectively identical to consistency.)
- AIC is minimax-rate adaptive, but BIC is not.
- Further Reading: Yang (2005), Yang (2007)

Consistency and Efficiency in a Simple Example

Information Criteria

Consider criteria of the form $\mathrm{IC}_{m}=2 \ell(\theta)-d_{T} \times \operatorname{length}(\theta)$.
True DGP
$Y_{1}, \ldots, Y_{T} \sim \operatorname{iid} \mathrm{~N}(\mu, 1)$
Candidate Models
M_{0} assumes $\mu=0, \mathrm{M}_{1}$ does not restrict μ. Only one parameter:

$$
\begin{aligned}
& \mathrm{IC}_{0}=2 \max _{\mu}\left\{\ell(\mu): \mathrm{M}_{0}\right\} \\
& \mathrm{IC}_{1}=2 \max _{\mu}\left\{\ell(\mu): \mathrm{M}_{1}\right\}-d_{T}
\end{aligned}
$$

Log-Likelihood Function

Simple Algebra

$$
\ell_{T}(\mu)=\text { Constant }-\frac{1}{2} \sum_{t=1}^{T}\left(Y_{t}-\mu\right)^{2}
$$

Tedious Algebra

$$
\sum_{t=1}^{T}\left(Y_{t}-\mu\right)^{2}=T(\bar{Y}-\mu)^{2}+T \widehat{\sigma}^{2}
$$

Combining These

$$
\ell_{T}(\mu)=\text { Constant }-\frac{T}{2}(\bar{Y}-\mu)^{2}
$$

The Selected Model \widehat{M}

Information Criteria

M_{0} sets $\mu=0$ while M_{1} uses the MLE \bar{Y}, so we have

$$
\begin{aligned}
& \mathrm{IC}_{0}=2 \max _{\mu}\left\{\ell(\mu): \mathrm{M}_{0}\right\}=2 \times \text { Constant }-T \bar{Y}^{2} \\
& \mathrm{IC}_{1}=2 \max _{\mu}\left\{\ell(\mu): \mathrm{M}_{1}\right\}-d_{T}=2 \times \text { Constant }-d_{T}
\end{aligned}
$$

Difference of Criteria

$$
\mathrm{IC}_{1}-\mathrm{IC} 0=T \bar{Y}^{2}-d_{T}
$$

Selected Model

$$
\widehat{\mathrm{M}}= \begin{cases}\mathrm{M}_{1}, & |\sqrt{T} \bar{Y}| \geq \sqrt{d_{T}} \\ \mathrm{M}_{0}, & |\sqrt{T} \bar{Y}|<\sqrt{d_{T}}\end{cases}
$$

Verifying Weak Consistency: $\mu \neq 0$

KL Divergence for M_{0} and M_{1}
$K L\left(g ; M_{0}\right)=\mu^{2} / 2, \quad K L\left(g ; M_{1}\right)=0$
Condition on KL-Divergence

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}\left\{K L\left(g ; M_{0}\right)-K L\left(g ; M_{1}\right)\right\}=\liminf _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}\left(\frac{\mu^{2}}{2}-0\right)>0
$$

Condition on Penalty

- Need $c_{T, k}=o_{p}(T)$, i.e. $c_{T, k} / T \xrightarrow{p} 0$.
- Both AIC and BIC satisfy this
- If $\mu \neq 0$, both AIC and BIC select M_{1} wpa 1 as $T \rightarrow \infty$.

Verifying Consistency: $\mu=0$

What's different?

- Both M_{1} and M_{0} are true and minimize KL divergence at zero.
- Consistency says choose most parsimonious true model: M_{0}

Verifying Conditions for Consistency

- $N(0,1)$ model nested inside $N(\mu, 1)$ model
- Truth is $N(0,1)$ so LR-stat is asymptotically $\chi^{2}(1)=O_{p}(1)$.
- For penalty term, need $\mathbb{P}\left(c_{T, k}-c_{T, 0}\right) \rightarrow \infty$
- BIC satisfies this but AIC doesn't.

Finite-Sample Selection Probabilities: AIC

AIC Sets $d_{T}=2$

$$
\begin{aligned}
& \widehat{M}_{A I C}= \begin{cases}M_{1}, & |\sqrt{T} \bar{Y}| \geq \sqrt{2} \\
M_{0}, & |\sqrt{T} \bar{Y}|<\sqrt{2}\end{cases} \\
& P\left(\widehat{M}_{A I C}=M_{1}\right)=P(|\sqrt{T} \bar{Y}| \geq \sqrt{2}) \\
&=P(|\sqrt{T} \mu+Z| \geq \sqrt{2}) \\
&=P(\sqrt{T} \mu+Z \leq-\sqrt{2})+[1-P(\sqrt{T} \mu+Z \leq \sqrt{2})] \\
&=\Phi(-\sqrt{2}-\sqrt{T} \mu)+[1-\Phi(\sqrt{2}-\sqrt{T} \mu)]
\end{aligned}
$$

where $Z \sim N(0,1)$ since $\bar{Y} \sim N(\mu, 1 / T)$ because $\operatorname{Var}\left(Y_{t}\right)=1$.

Finite-Sample Selection Probabilities: BIC

BIC sets $d_{T}=\log (T)$

$$
\widehat{M}_{B I C}= \begin{cases}M_{1}, & |\sqrt{T} \bar{Y}| \geq \sqrt{\log (T)} \\ M_{0}, & |\sqrt{T} \bar{Y}|<\sqrt{\log (T)}\end{cases}
$$

Same steps as for the AIC except with $\sqrt{\log (T)}$ in the place of $\sqrt{2}$:

$$
\begin{aligned}
P\left(\widehat{M}_{B I C}=M_{1}\right) & =P(|\sqrt{T} \bar{Y}| \geq \sqrt{\log (T)}) \\
& =\Phi(-\sqrt{\log (T)}-\sqrt{T} \mu)+[1-\Phi(\sqrt{\log (T)}-\sqrt{T} \mu)]
\end{aligned}
$$

Interactive Demo: AIC vs BIC
https://fditraglia.shinyapps.io/CH_Figure_4_1/

Probability of Over-fitting

- If $\mu=0$ both models are true but M_{0} is more parsimonious.
- Probability of over-fitting (Z denotes standard normal):

$$
\begin{aligned}
P\left(\widehat{M}=M_{1}\right) & =P\left(|\sqrt{T} \bar{Y}| \geq \sqrt{d_{T}}\right)=P\left(|Z| \geq \sqrt{d_{T}}\right) \\
& =P\left(Z^{2} \geq d_{T}\right)=P\left(\chi_{1}^{2} \geq d_{T}\right)
\end{aligned}
$$

- AIC: $d_{T}=2$ and $P\left(\chi_{1}^{2} \geq 2\right) \approx 0.157$.
- BIC: $d_{T}=\log (T)$ and $P\left(\chi_{1}^{2} \geq \log T\right) \rightarrow 0$ as $T \rightarrow \infty$.

AIC has $\approx 16 \%$ prob. of over-fitting; BIC does not over-fit in the limit.

Risk of the Post-Selection Estimator

The Post-Selection Estimator

$$
\widehat{\mu}= \begin{cases}\bar{Y}, & |\sqrt{T} \bar{Y}| \geq \sqrt{d_{T}} \\ 0, & |\sqrt{T} \bar{Y}|<\sqrt{d_{T}}\end{cases}
$$

Recall from above
Recall from above that $\sqrt{T} \bar{Y}=\sqrt{T} \mu+Z$ where $Z \sim N(0,1)$
Risk Function
MSE risk times T to get risk relative to minimax rate: $1 / T$.

$$
R(\mu, \widehat{\mu})=T \cdot \mathbb{E}\left[(\widehat{\mu}-\mu)^{2}\right]=\mathbb{E}\left[(\sqrt{T} \widehat{\mu}-\sqrt{T} \mu)^{2}\right]
$$

The Simplifed MSE Risk Function

$$
\begin{aligned}
R(\mu, \widehat{\mu}) & =1-[a \phi(a)-b \phi(b)+\Phi(b)-\Phi(a)]+T \mu^{2}[\Phi(b)-\Phi(a)] \\
& =1+[b \phi(b)-a \phi(a)]+\left(T \mu^{2}-1\right)[\Phi(b)-\Phi(a)]
\end{aligned}
$$

where

$$
\begin{aligned}
a & =-\sqrt{d_{T}}-\sqrt{T} \mu \\
b & =\sqrt{d_{T}}-\sqrt{T} \mu
\end{aligned}
$$

https://fditraglia.shinyapps.io/CH_Figure_4_2/

Understanding the Risk Plot

AIC

- For any $\mu \neq 0$, risk $\rightarrow 1$ as $T \rightarrow \infty$, the risk of the MLE
- For $\mu=0$, risk $\nrightarrow 0$, risk of "zero" estimator
- Max risk is bounded

BIC

- For any $\mu \neq 0$, risk $\rightarrow 1$ as $T \rightarrow \infty$, the risk of the MLE
- For $\mu=0$, risk $\rightarrow 0$, risk of "zero" estimator
- Max risk is unbounded

Lecture \#5 - Andrews (1999) Moment Selection Criteria

Lightning Review of GMM

The J-test Statistic Under Correct Specification

The J-test Statistic Under Mis-specification

Andrews (1999; Econometrica)

Generalized Method of Moments (GMM) Estimation

Notation

Let v_{t} be a $(r \times 1)$ random vector, θ be a $(p \times 1)$ parameter vector, and f be a $(q \times 1)$ vector of real-valued functions.

Popn. Moment Conditions

Sample Moment Conditions

$$
\bar{g}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} f\left(v_{t}, \theta\right)
$$

GMM Estimator

$$
\widehat{\theta}_{T}=\underset{\theta \in \Theta}{\arg \min } \bar{g}_{T}(\theta)^{\prime} \underset{(q \times q)}{W_{T}} \bar{g}_{T}(\theta), \quad W_{T} \rightarrow_{p} W(\mathrm{psd})
$$

Key Assumptions for GMM I

Stationarity

The sequence $\left\{v_{t}:-\infty<t<\infty\right\}$ is strictly stationary. This implies that any moments of v_{t} are constant over t.

Global Identification
$\mathbb{E}\left[f\left(v_{t}, \theta_{0}\right)\right]=0$ but $\mathbb{E}\left[f\left(v_{t}, \widetilde{\theta}\right)\right] \neq 0$ for any $\widetilde{\theta} \neq \theta_{0}$.
Regularity Conditions for Moment Functions
$f: \mathcal{V} \times \Theta \rightarrow \mathbb{R}^{q}$ satisfies:
(i) f is v_{t}-almost surely continuous on Θ
(ii) $E\left[f\left(v_{t}, \theta\right)\right]<\infty$ exists and is continuous on Θ

Key Assumptions for GMM I

Regularity Conditions for Derivative Matrix
(i) $\nabla_{\theta^{\prime}} f\left(v_{t}, \theta\right)$ exists and is v_{t}-almost continuous on Θ
(ii) $E\left[\nabla_{\theta} f\left(v_{t}, \theta_{0}\right)\right]<\infty$ exists and is continuous in a neighborhood N_{ϵ} of θ_{0}
(iii) $\sup _{\theta \in N_{\epsilon}}\left\|T^{-1} \sum_{t=1}^{T} \nabla_{\theta} f\left(v_{t}, \theta\right)-E\left[\nabla_{\theta} f\left(v_{t}, \theta\right)\right]\right\| \xrightarrow{p} 0$

Regularity Conditions for Variance of Moment Conditions
(i) $E\left[f\left(v_{t}, \theta_{0}\right) f\left(v_{t}, \theta_{0}\right)^{\prime}\right]$ exists and is finite.
(ii) $\lim _{T \rightarrow \infty} \operatorname{Var}\left[\sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)\right]=S$ exists and is a finite, positive definite matrix.

Main Results for GMM Estimation

Under the Assumptions Described Above
Consistency: $\widehat{\theta}_{T} \xrightarrow{p} \theta_{0}$

Asymptotic Normality: $\sqrt{T}\left(\widehat{\theta}_{T}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, M S M^{\prime}\right)$

$$
\begin{aligned}
M & =\left(G_{0} W G_{0}\right)^{-1} G_{0}^{\prime} W \\
S & =\lim _{T \rightarrow \infty} \operatorname{Var}\left[\sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)\right] \\
G_{0} & =E\left[\nabla_{\theta^{\prime}} f\left(v_{t}, \theta_{0}\right)\right] \\
W & =\operatorname{plim}_{T \rightarrow \infty} W_{T}
\end{aligned}
$$

The J-test Statistic

$$
J_{T}=T \bar{g}_{T}\left(\widehat{\theta}_{T}^{\prime}\right) \widehat{S}^{-1} \bar{g}_{T}\left(\hat{\theta}_{T}\right)
$$

$$
\widehat{S} \rightarrow_{p} S=\lim _{T \rightarrow \infty} \operatorname{Var}\left[\sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)\right]
$$

$$
\bar{g}_{T}\left(\widehat{\theta}_{T}\right)=\frac{1}{T} \sum_{t=1}^{T} f\left(v_{t}, \widehat{\theta}_{T}\right)
$$

$$
\widehat{\theta}_{T}=\mathrm{GMM} \text { Estimator }
$$

Case I: Correct Specification

Suppose that all of the preceding assumptions hold, in particular that the model is correctly specified:

$$
\mathbb{E}\left[f\left(v_{t}, \theta_{0}\right)\right]=0
$$

Recall that under the standard assumptions, the GMM estimator is consistent regardless of the choice of $W_{T} \ldots$

Case I: Taylor Expansion under Correct Specification

$$
\begin{aligned}
W_{T}^{1 / 2} \sqrt{T} \bar{g}_{T}\left(\widehat{\theta}_{T}\right) & =\left[I_{q}-P\left(\theta_{0}\right)\right] W^{1 / 2} \sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)+o_{p}(1) \\
P\left(\theta_{0}\right) & =F\left(\theta_{0}\right)\left[F\left(\theta_{0}\right)^{\prime} F\left(\theta_{0}\right)\right]^{-1} F\left(\theta_{0}\right)^{\prime} \\
F\left(\theta_{0}\right) & =W^{1 / 2} E\left[\nabla_{\theta} f\left(v_{t}, \theta_{0}\right)\right]
\end{aligned}
$$

Over-identification
If $\operatorname{dim}(f)>\operatorname{dim}\left(\theta_{0}\right), W^{1 / 2} \mathbb{E}\left[f\left(v_{t}, \theta_{0}\right)\right]$ is the linear combn. used in GMM estimation.

Identifying and Over-Identifying Restrictions
$P\left(\theta_{0}\right) \equiv$ identifying restrictions;
$I_{q}-P\left(\theta_{0}\right) \equiv$ over-identifying restrictions

J-test Statistic Under Correct Specification

$$
W_{T}^{1 / 2} \sqrt{T} \bar{g}_{T}\left(\widehat{\theta}_{T}\right)=\left[I_{q}-P\left(\theta_{0}\right)\right] W^{1 / 2} \sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)+o_{p}(1)
$$

- CLT for $\sqrt{T} \bar{g}_{T}\left(\theta_{0}\right)$
- $I_{q}-P\left(\theta_{0}\right)$ has rank $(q-p)$, since $P\left(\theta_{0}\right)$ has rank p.
- Singular normal distribution
- $W_{T}^{1 / 2} \sqrt{T} \bar{g}_{T}\left(\widehat{\theta}_{T}\right) \xrightarrow{d} \mathcal{N}\left(0, N W^{1 / 2} S W^{1 / 2} N^{\prime}\right)$
- Substituting $\widehat{S}^{-1}, J_{T} \xrightarrow{d} \chi_{q-p}^{2}$

Case II: Fixed Mis-specification

$$
\mathbb{E}\left[f\left(v_{\mathrm{t}}, \theta\right)\right]=\mu(\theta), \quad\|\mu(\theta)\|>0, \quad \forall \theta \in \Theta
$$

N.B.

This can only occur in the over-identified case, since we can always solve the population moment conditions in the just-identified case.

Notation

- $\theta^{*} \equiv$ solution to identifying restrictions $\left(\widehat{\theta}_{T} \rightarrow_{p} \theta^{*}\right)$
- $\mu^{*}=\mu\left(\theta^{*}\right)=\operatorname{plim}_{T \rightarrow \infty} \bar{g}_{T}\left(\widehat{\theta}_{T}\right)$

Case II: Fixed Mis-specification

$$
\frac{1}{T} J_{T}=\bar{g}_{T}\left(\widehat{\theta}_{T}\right)^{\prime} \widehat{S}^{-1} \bar{g}_{T}\left(\widehat{\theta}_{T}\right)=\mu_{*}^{\prime} W \mu_{*}+o_{p}(1)
$$

- W positive definite
- since $\mu(\theta)>0$ for all $\theta \in \Theta$.
- Hence: $\mu_{*}^{\prime} W \mu_{*}>0$
- Fixed mis-specification $\Rightarrow J$-test statistic diverges at rate T :

$$
J_{T}=T \mu_{*}^{\prime} W \mu_{*}+o_{p}(T)
$$

Summary: Correct Specification vs. Fixed Mis-specification

Correct Specification: $J_{T} \Rightarrow \chi_{q-p}^{2}=O_{p}(1)$

Fixed Mis-specification: $J_{T}=O_{p}(T)$

Andrews (1999; Econometrica)

- Family of moment selection criteria (MSC) for GMM
- Aims to consistently choose any and all correct MCs and eliminate incorrect MCs
- AIC/BIC: add a penalty to maximized log-likelihood
- Andrews MSC: add a bonus term to the J-statistic
- J-stat shows how well MCs "fit"
- Compares $\widehat{\theta}_{T}$ estimated using $P\left(\theta_{0}\right)$ to MCs from $I_{q}-P\left(\theta_{0}\right)$
- J-stat tends to increase with degree of overidentification even if MCs are correct, since it converges to a χ_{q-p}^{2}

Andrews (1999) - Notation

$f_{\max } \equiv(q \times 1)$ vector of all MCs under consideration
$c \equiv(q \times 1)$ selection vector: zeros and ones indicating which MCs are included
$\mathcal{C} \equiv$ set of all candidates c
$|c| \equiv \#$ of MCs in candidate c
Let $\widehat{\theta}_{T}(c)$ be the efficient two-step GMM estimator based on the moment conditions $E\left[f\left(v_{t}, \theta, c\right)\right]=0$ and define

$$
\begin{aligned}
V_{\theta}(c) & =\left[G_{0}(c) S(c)^{-1} G_{0}(c)\right]^{-1} \\
G_{0}(c) & =E\left[\nabla_{\theta}^{\prime} f\left(v_{t}, \theta_{0} ; c\right)\right] \\
S(c) & =\lim _{T \rightarrow \infty} \operatorname{Var}\left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} f\left(v_{t}, \theta_{0} ; c\right)\right] \\
J_{T}(c) & =T \bar{g}_{T}\left(\widehat{\theta}_{T}(c) ; c\right)^{\prime} \widehat{S}_{T}(c)^{-1} \bar{g}_{T}\left(\widehat{\theta}_{T}(c) ; c\right)
\end{aligned}
$$

Identification Condition

- Andrews wants maximual set of correct MCs
- Consistent, minimum asymptotic variance
- But different θ values could solve $\mathbb{E}\left[f\left(v_{t}, \theta, c\right)\right]$ for different c !
- Which θ_{0} are we actually trying to be consistent for?

More Notation

- $\mathcal{Z}^{0} \equiv$ set of all c for which $\exists \theta$ with $\mathbb{E}\left[f\left(v_{t}, \theta, c\right)\right]=0$
- $\mathcal{M} \mathcal{Z}^{0} \equiv$ subset of \mathcal{Z}^{0} with maximal $|c|$.

Assumption
Andrews assumes that $\mathcal{M} \mathcal{Z}^{0}=\left\{c_{0}\right\}$, a singleton.

Family of Moment Selection Criteria

- Criteria of the form $M S C(c)=J_{T}(c)-B(T,|c|)$
- B is a bonus term that depends on sample size and \# of MCs
- Choose $\widehat{c}_{T}=\arg \min M S C(c)$
- Implementation Detail: Andrews suggests using a centered covariance matrix estimator:
$\widehat{S}(c)=\frac{1}{T} \sum_{t=1}^{T}\left[f\left(v_{t}, \widehat{\theta}_{T}(c) ; c\right)-\bar{g}_{T}\left(\widehat{\theta}_{T}(c) ; c\right)\right]\left[f\left(v_{t}, \widehat{\theta}_{T}(c) ; c\right)-\bar{g}_{T}\left(\widehat{\theta}_{T}(c) ; c\right)\right]^{\prime}$
based on the weighting matrix that would be efficient if the moment conditions were correctly specified. This remains consistent for $S(c)$ even under fixed mis-specification

Regularity Conditions for the J-test Statistic

(i) If $\mathbb{E}\left[f\left(v_{t}, \theta ; c\right)\right]=0$ for a unique $\theta \in \Theta$, then $J_{T}(c) \xrightarrow{d} \chi_{|c|-p}^{2}$
(ii) If $\mathbb{E}\left[f\left(v_{t}, \theta ; c\right)\right] \neq 0$ for a all $\theta \in \Theta$ then $T^{-1} J_{T}(c) \xrightarrow{p} a(c)$, a finite, positive constant that may depend on c.

Regularity Conditions for Bonus Term

The bonus term can be written as $B(|c|, T)=\kappa_{T} h(|c|)$, where
(i) $h(\cdot)$ is strictly increasing
(ii) $\kappa_{T} \rightarrow \infty$ as $T \rightarrow \infty$ and $\kappa_{T}=o(T)$

Identification Conditions

(i) $\mathcal{M Z}^{0}=\left\{c_{0}\right\}$
(ii) $\mathbb{E}\left[f\left(v_{t}, \theta_{0} ; c_{0}\right)\right]=0$ and $E\left[f\left(v_{t}, \theta ; c_{0}\right)\right] \neq 0$ for any $\theta \neq \theta_{0}$

Consistency of Moment Selection

Theorem

Under the preceding assumptions, $M S C(c)$ is a consistent moment selection criterion, i.e. $\widehat{c}_{T} \xrightarrow{p} c_{0}$.

Some Examples

$$
\begin{aligned}
\operatorname{GMM}-\operatorname{BIC}(c) & =J_{T}(c)-(|c|-p) \log (T) \\
\operatorname{GMM}-\mathrm{HQ}(c) & =J_{T}(c)-2.01(|c|-p) \log (\log (T)) \\
\operatorname{GMM}-\operatorname{AIC}(c) & =J_{T}(c)-2(|c|-p)
\end{aligned}
$$

How do these examples behave?

- GMM-AIC: $\kappa_{T}=2$
- GMM-BIC: $\lim _{T \rightarrow \infty} \log (T) / T=0 \checkmark$
- GMM-HQ: $\lim _{T \rightarrow \infty} \log (\log (T)) / T=0 \checkmark$

Proof

Need to show

$$
\lim _{T \rightarrow \infty} \mathbb{P}[\underbrace{\mathrm{MSC}_{T}(c)-M S E_{T}\left(c_{0}\right)}_{\Delta_{T}(c)}>0]=1 \quad \text { for any } c \neq c_{0}
$$

Defintion of $\mathrm{MSC}_{T}(c)$

$$
\Delta_{T}(c)=\left[J_{T}(c)-J_{T}\left(c_{0}\right)\right]+\kappa_{T}\left[h\left(\left|c_{0}\right|\right)-h(|c|)\right]
$$

Two Cases
I. Unique θ_{1} such that $\mathbb{E}\left[f\left(v_{t}, \theta_{1} ; c_{1}\right)\right]=0 \quad\left(c_{1} \neq c_{0}\right)$
II. For all $\theta \in \Theta$ we have $\mathbb{E}\left[f\left(v_{t}, \theta ; c_{2}\right)\right] \neq 0 \quad\left(c_{2} \neq c_{0}\right)$

Case I: $c_{1} \neq c_{0}$ is "correctly specified"

1. Regularity Condition (i) for J-stat. applies to c_{0} and c_{1}

$$
J_{T}\left(c_{1}\right)-J_{T}\left(c_{0}\right) \rightarrow^{\mathrm{d}} \chi_{\left|c_{1}\right|-p}^{2}-\chi_{\left|c_{0}\right|-p}^{2}=O_{p}(1)
$$

2. Identification Condition (i) says c_{0} is the unique, maximal set of correct moment conditions $\Longrightarrow\left|c_{0}\right|>\left|c_{1}\right|$
3. Bonus Term Condition (i): h is strictly increasing $\Longrightarrow h\left(\left|c_{0}\right|\right)-h\left(\left|c_{1}\right|\right)>0$
4. Bonus Term Condition (ii): κ_{T} diverges to infinity $\Longrightarrow \kappa, T\left[h\left(\left|c_{0}\right|-h\left(\left|c_{1}\right|\right)\right] \rightarrow \infty\right.$
5. Therefore: $\Delta_{T}\left(c_{1}\right)=O_{p}(1)+\kappa_{T}\left[h\left(\left|c_{0}\right|-h\left(\left|c_{1}\right|\right)\right] \rightarrow \infty \checkmark\right.$

Case II: $c_{2} \neq c_{0}$ is mis-specified

1. Regularity Condition (i) for J-stat. applies to c_{0}; (ii) applies to c_{2}

$$
\frac{1}{T}\left[J_{T}\left(c_{2}\right)-J_{T}\left(c_{0}\right)\right]=\left[a\left(c_{2}\right)+o_{p}(1)\right]+\left[\frac{1}{T} \chi_{\left|c_{0}\right|-p}^{2}\right]=a\left(c_{2}\right)+o_{p}(1)
$$

2. Bonus Term Condition (ii): h is strictly increasing. Since $\left|c_{0}\right|$ and $\left|c_{2}\right|$ are finite $\Longrightarrow\left[h\left(\left|c_{0}\right|\right)-h\left(\left|c_{1}\right|\right)\right]$ is finite
3. Bonus Term Condition (i): $\kappa_{T}=o(T)$. Combined with prev. step:

$$
\frac{1}{T}\left[\kappa_{T}\left\{h\left(\left|c_{0}\right|\right)-h\left(\left|c_{2}\right|\right)\right\}\right]=\frac{1}{T}[o(T) \times \text { Constant }]=o(1)
$$

4. $(1$ and 3$) \Longrightarrow \frac{1}{T} \Delta_{T}\left(c_{2}\right)=a\left(c_{2}\right)+o_{p}(1)+o(1) \rightarrow^{p} a\left(c_{2}\right)>0$
5. Therefore $\Delta_{T}\left(c_{2}\right) \rightarrow \infty$ wpa 1 as $T \rightarrow \infty$.

Lecture \#6 - Focused Moment Selection

DiTraglia (2016, JoE)

Focused Moment Selection Criterion (FMSC)

1. Choose False Assumptions on Purpose
2. Focused Choice of Assumptions
3. Local mis-specification
4. Averaging, Inference post-selection

GMM Framework

Adding Moment Conditions

Ordinary versus Two-Stage Least Squares

$$
\begin{aligned}
& y_{i}=\beta x_{i}+\epsilon_{i} \\
& x_{i}=\mathbf{z}_{i}^{\prime} \boldsymbol{\pi}+v_{i}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\mathbf{z}_{i} \epsilon_{i}\right]=0 \\
& E\left[x_{i} \epsilon_{i}\right]=?
\end{aligned}
$$

Choosing Instrumental Variables

$$
\begin{aligned}
& y_{i}=\beta x_{i}+\epsilon_{i} \\
& x_{i}=\Pi_{1}^{\prime} \mathbf{z}_{i}^{(1)}+\Pi_{2}^{\prime} \mathbf{z}_{i}^{(2)}+v_{i}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\mathbf{z}_{i}^{(1)} \epsilon_{i}\right]=0 \\
& E\left[\mathbf{z}_{i}^{(2)} \epsilon_{i}\right]=?
\end{aligned}
$$

FMSC Asymptotics - Local Mis-Specification

Local Mis-Specification for OLS versus TSLS

$$
\begin{aligned}
& y_{i}=\beta x_{i}+\epsilon_{i} \\
& x_{i}=\mathbf{z}_{i}^{\prime} \boldsymbol{\pi}+v_{i}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\mathbf{z}_{i} \epsilon_{i}\right]=0 \\
& E\left[x_{i} \epsilon_{i}\right]=\tau / \sqrt{n}
\end{aligned}
$$

Local Mis-Specification for Choosing IVs

$$
\begin{aligned}
& y_{i}=\beta x_{i}+\epsilon_{i} \\
& x_{i}=\Pi_{1}^{\prime} \mathbf{z}_{i}^{(1)}+\Pi_{2}^{\prime} \mathbf{z}_{i}^{(2)}+v_{i}
\end{aligned}
$$

$$
\begin{aligned}
E\left[\mathbf{z}_{i}^{(1)} \epsilon_{i}\right] & =0 \\
E\left[\mathbf{z}_{i}^{(2)} \epsilon_{i}\right] & =\tau / \sqrt{n}
\end{aligned}
$$

Local Mis-Specification

Triangular Array $\left\{Z_{n i}: 1 \leq i \leq n, n=1,2, \ldots\right\}$ with
(a) $E\left[g\left(Z_{n i}, \theta_{0}\right)\right]=0$
(b) $E\left[h\left(Z_{n i}, \theta_{0}\right)\right]=n^{-1 / 2} \tau$
(c) $\left\{f\left(Z_{n i}, \theta_{0}\right): 1 \leq i \leq n, n=1,2, \ldots\right\}$ uniformly integrable
(d) $Z_{n i} \rightarrow_{d} Z_{i}$, where the Z_{i} are identically distributed.

Shorthand: Write Z for Z_{i}

Candidate GMM Estimator

$$
\widehat{\theta}_{S}=\underset{\theta \in \Theta}{\arg \min }\left[\bar{\Xi}_{S} f_{n}(\theta)\right]^{\prime} \widetilde{W}_{S}\left[\Xi_{S} f_{n}(\theta)\right]
$$

$\Xi_{s}=$ Selection Matrix (ones and zeros)
$\widetilde{W}_{S}=$ Weight Matrix (p.s.d.)

$$
f_{n}(\theta)=\left[\begin{array}{l}
g_{n}(\theta) \\
h_{n}(\theta)
\end{array}\right]=\left[\begin{array}{l}
n^{-1} \sum_{i=1}^{n} g\left(Z_{n i}, \theta\right) \\
n^{-1} \sum_{i=1}^{n} h\left(Z_{n i}, \theta\right)
\end{array}\right]
$$

Notation: Limit Quantities

$$
\begin{gathered}
G=E\left[\nabla_{\theta} g\left(Z, \theta_{0}\right)\right], \quad H=E\left[\nabla_{\theta} h\left(Z, \theta_{0}\right)\right], \quad F=\left[\begin{array}{c}
G \\
H
\end{array}\right] \\
\Omega=\operatorname{Var}\left[f\left(Z, \theta_{0}\right)\right]=\left[\begin{array}{cc}
\Omega_{g g} & \Omega_{g h} \\
\Omega_{h g} & \Omega_{h h}
\end{array}\right] \\
\widetilde{W}_{S} \rightarrow_{p} W_{S} \text { (p.d.) }
\end{gathered}
$$

Local Mis-Specification + Standard Regularity Conditions

Every candidate estimator is consistent for θ_{0} and

$$
\sqrt{n}\left(\widehat{\theta}_{S}-\theta_{0}\right) \rightarrow_{d}-K_{S} \equiv_{S}\left(\left[\begin{array}{l}
M_{g} \\
M_{h}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\tau
\end{array}\right]\right)
$$

$$
\begin{aligned}
K_{S} & =\left[F_{S}^{\prime} W_{S} F_{S}\right]^{-1} F_{S}^{\prime} W_{S} \\
M & =\left(M_{g}^{\prime}, M_{h}^{\prime}\right)^{\prime} \\
M & \sim N(0, \Omega)
\end{aligned}
$$

Scalar Target Parameter μ

$$
\begin{array}{rll}
\mu & =\mu(\theta) \quad \text { Z-a.s. continuous function } \\
\mu_{0} & =\mu\left(\theta_{0}\right) & \text { true value } \\
\widehat{\mu}_{S} & =\mu\left(\widehat{\theta}_{S}\right) & \text { estimator }
\end{array}
$$

Delta Method

$$
\sqrt{n}\left(\widehat{\mu}_{S}-\mu_{0}\right) \rightarrow_{d}-\nabla_{\theta} \mu\left(\theta_{0}\right)^{\prime} K_{S} \equiv{ }_{S}\left(M+\left[\begin{array}{l}
0 \\
\tau
\end{array}\right]\right)
$$

FMSC: Estimate $\operatorname{AMSE}\left(\widehat{\mu}_{S}\right)$ and minimize over S

$$
\operatorname{AMSE}\left(\widehat{\mu}_{S}\right)=\nabla_{\theta} \mu\left(\theta_{0}\right)^{\prime} K_{S} \Xi_{S}\left\{\left[\begin{array}{cc}
0 & 0 \\
0 & \tau \tau^{\prime}
\end{array}\right]+\Omega\right\} \Xi_{S}^{\prime} K_{S}^{\prime} \nabla_{\theta} \mu\left(\theta_{0}\right)
$$

Estimating the unknowns
No consistent estimator of τ exists! (But everything else is easy)

A Plug-in Estimator of τ

An Asymptotically Unbiased Estimator of $\tau \tau^{\prime}$

$$
\begin{gathered}
\sqrt{n} h_{n}\left(\widehat{\theta}_{v}\right)=\widehat{\tau} \rightarrow_{d}(\Psi M+\tau) \sim N_{q}\left(\tau, \psi \Omega \Psi^{\prime}\right) \\
\psi=\left[\begin{array}{ll}
-H K_{v} & \mathbf{I}_{q}
\end{array}\right]
\end{gathered}
$$

$\widehat{\tau} \widehat{\tau}^{\prime}-\widehat{\psi} \widehat{\Omega} \widehat{\psi}$ is an asymptotically unbiased estimator of $\tau \tau^{\prime}$.

FMSC: Asymptotically Unbiased Estimator of AMSE

$\operatorname{FMSC}_{n}(S)=\nabla_{\theta} \mu(\widehat{\theta})^{\prime} \widehat{K}_{S} \Xi_{S}\left\{\left[\begin{array}{cc}0 & 0 \\ 0 & \widehat{B}\end{array}\right]+\widehat{\Omega}\right\} \Xi_{S}^{\prime} \widehat{K}_{S}^{\prime} \nabla_{\theta} \mu(\widehat{\theta})$

$$
\widehat{B}=\widehat{\tau} \widehat{\tau}^{\prime}-\widehat{\psi} \widehat{\Omega} \widehat{\psi}^{\prime}
$$

Choose S to minimize $\mathrm{FMSC}_{n}(S)$ over the set of candidates \mathscr{S}.

A (Very) Special Case of the FMSC

Under homoskedasticity, FMSC selection in the OLS versus TSLS example is identical to a Durbin-Hausman-Wu test with $\alpha \approx 0.16$

$$
\widehat{\tau}=n^{-1 / 2} \mathbf{x}^{\prime}\left(\mathbf{y}-\mathbf{x} \widetilde{\beta}_{T S L S}\right)
$$

OLS gets benefit of the doubt, but not as much as $\alpha=0.05,0.1$

Limit Distribution of FMSC

$F M S C_{n}(S) \rightarrow_{d} \mathrm{FMSC}_{S}$, where

$$
\begin{aligned}
\mathrm{FMSC}_{S} & =\nabla_{\theta} \mu\left(\theta_{0}\right)^{\prime} K_{S} \Xi_{s}\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right]+\Omega\right\} \Xi_{s}^{\prime} K_{S}^{\prime} \nabla_{\theta} \mu\left(\theta_{0}\right) \\
B & =(\Psi M+\tau)(\Psi M+\tau)^{\prime}-\Psi \Omega \Psi^{\prime}
\end{aligned}
$$

Conservative criterion: random even in the limit.

Moment Average Estimators

$$
\widehat{\mu}=\sum_{S \in \mathscr{S}} \widehat{\omega}_{S} \widehat{\mu}_{S}
$$

Additional Notation

$\widehat{\mu}$ Moment-average Estimator
$\widehat{\mu}_{S}$ Estimator of target parameter under moment set S
$\widehat{\omega}_{S}$ Data-dependent weight function
\mathscr{S} Collection of moment sets under consideration

Examples of Moment-Averaging Weights

Post-Moment Selection Weights
$\widehat{\omega}_{S}=\mathbf{1}\left\{\operatorname{MSC}_{n}(S)=\min _{S^{\prime} \in \mathscr{S}} \operatorname{MSC}_{n}\left(S^{\prime}\right)\right\}$
Exponential Weights

$$
\widehat{\omega}_{S}=\exp \left\{-\frac{\kappa}{2} \operatorname{MSC}(S)\right\} / \sum_{S^{\prime} \in \mathscr{S}} \exp \left\{-\frac{\kappa}{2} \mathrm{MSC}\left(S^{\prime}\right)\right\}
$$

Minimum-AMSE Weights...

Minimum AMSE-Averaging Estimator: OLS vs. TSLS

$$
\widetilde{\beta}(\omega)=\omega \widehat{\beta} O L S+(1-\omega) \widetilde{\beta}_{T S L S}
$$

Under homoskedasticity:

$$
\omega^{*}=\left[1+\frac{\operatorname{ABIAS}(\mathrm{OLS})^{2}}{\operatorname{AVAR}(\mathrm{TSLS})-\operatorname{AVAR}(\mathrm{OLS})}\right]^{-1}
$$

Estimate by:

$$
\widehat{\omega}^{*}=\left[1+\frac{\max \left\{0,\left(\widehat{\tau}^{2}-\widehat{\sigma}_{\epsilon}^{2} \widehat{\sigma}_{x}^{2}\left(\widehat{\sigma}_{x}^{2} / \widehat{\gamma}^{2}-1\right)\right) / \widehat{\sigma}_{x}^{4}\right\}}{\widehat{\sigma}_{\epsilon}^{2}\left(1 / \widehat{\gamma}^{2}-1 / \widehat{\sigma}_{x}^{2}\right)}\right]^{-1}
$$

Where $\widehat{\gamma}^{2}=n^{-1} \mathbf{x}^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \mathbf{x}$

Limit Distribution of Moment-Average Estimators

$$
\widehat{\mu}=\sum_{S \in \mathscr{S}} \widehat{\omega}_{S} \widehat{\mu}_{S}
$$

(i) $\sum_{S \in \mathscr{S}} \widehat{\omega}_{S}=1$ a.s.
(ii) $\widehat{\omega}(S) \rightarrow_{d} \varphi_{S}(\tau, M)$ a.s.-continuous function of τ, M and consistently-estimable constants only

$$
\begin{gathered}
\sqrt{n}\left(\widehat{\mu}-\mu_{0}\right) \rightarrow_{d} \Lambda(\tau) \\
\Lambda(\tau)=-\nabla_{\theta} \mu\left(\theta_{0}\right)^{\prime}\left[\sum_{S \in \mathscr{S}} \varphi_{S}(\tau, M) K_{S} \Xi_{S}\right]\left(M+\left[\begin{array}{l}
0 \\
\tau
\end{array}\right]\right)
\end{gathered}
$$

Simulating from the Limit Experiment

Suppose τ Known, Consistent Estimators of Everything Else 1. for $j \in\{1,2, \ldots, J\}$
(i) $M_{j} \stackrel{i i d}{\sim} N_{p+q}(0, \widehat{\Omega})$
(ii) $\Lambda_{j}(\tau)=-\nabla_{\theta} \mu(\widehat{\theta})^{\prime}\left[\sum_{s \in \mathscr{S}} \widehat{\varphi}_{S}\left(M_{j}+\tau\right) \widehat{K}_{s} \bar{Z}_{s}\right]\left(M_{j}+\tau\right)$
2. Using $\left\{\Lambda_{j}(\tau)\right\}_{j=1}^{J}$ calculate $\widehat{a}(\tau), \widehat{b}(\tau)$ such that

$$
P[\widehat{a}(\tau) \leq \Lambda(\tau) \leq \widehat{b}(\tau)]=1-\alpha
$$

3. $P\left[\widehat{\mu}-\widehat{b}(\tau) / \sqrt{n} \leq \mu_{0} \leq \widehat{\mu}-\widehat{a}(\tau) / \sqrt{n}\right] \approx 1-\alpha$

Two-step Procedure for Conservative Intervals

1. Construct $1-\delta$ confidence region $\mathscr{T}(\widehat{\tau}, \delta)$ for τ
2. For each $\tau^{*} \in \mathscr{T}(\widehat{\tau}, \delta)$ calculate $1-\alpha$ confidence interval $\left[\widehat{a}\left(\tau^{*}\right), \widehat{b}\left(\tau^{*}\right)\right]$ for $\Lambda\left(\tau^{*}\right)$ as descibed on previous slide.
3. Take the lower and upper bound over the resulting intervals: $\widehat{a}_{\text {min }}(\widehat{\tau})=\min _{\tau^{*} \in \mathscr{T}} \widehat{a}\left(\tau^{*}\right), \quad \widehat{b}_{\text {max }}\left(\widehat{\tau^{*}}\right)=\max _{\tau^{*} \in \mathscr{T}} \widehat{b}(\tau)$
4. The interval

$$
\mathrm{Cl}_{\text {sim }}=\left[\widehat{\mu}-\frac{\widehat{b}_{\max }(\widehat{\tau})}{\sqrt{n}}, \quad \widehat{\mu}-\frac{\widehat{a}_{\text {min }}(\widehat{\tau})}{\sqrt{n}}\right]
$$

has asymptotic coverage of at least $1-(\alpha+\delta)$

OLS versus TSLS Simulation

$$
\begin{gathered}
y_{i}=0.5 x_{i}+\epsilon_{i} \\
x_{i}=\pi\left(z_{1 i}+z_{2 i}+z_{3 i}\right)+v_{i} \\
\left(\epsilon_{i}, v_{i}, z_{1 i}, z_{2 i}, z_{3 i}\right) \sim \text { iid } N(0, \mathcal{S}) \\
\mathcal{S}=\left[\begin{array}{ccccc}
1 & \rho & 0 & 0 & 0 \\
\rho & 1-\pi^{2} & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 / 3
\end{array}\right] \\
\operatorname{Var}(x)=1, \quad \rho=\operatorname{Cor}(x, \epsilon),
\end{gathered}
$$

ρ

$N=50, \pi=0.4$

Choosing Instrumental Variables Simulation

$$
\begin{gathered}
y_{i}=0.5 x_{i}+\epsilon_{i} \\
x_{i}=\left(z_{1 i}+z_{2 i}+z_{3 i}\right) / 3+\gamma w_{i}+v_{i} \\
\left(\epsilon_{i}, v_{i}, w_{i}, z_{i 1}, z_{2 i}, z_{3 i}\right)^{\prime} \sim \operatorname{iid} N(0, \mathcal{V}) \\
\mathcal{V}=\left[\begin{array}{cccccc}
1 & (0.5-\gamma \rho) & \rho & 0 & 0 & 0 \\
(0.5-\gamma \rho) & \left(8 / 9-\gamma^{2}\right) & 0 & 0 & 0 & 0 \\
\rho & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3
\end{array}\right] \\
\gamma=\operatorname{Cor}(x, w), \\
\operatorname{Var}(x)=1, \quad \operatorname{Cor}(w, \epsilon), \quad \text { First-Stage } R^{2}=1 / 9+\gamma^{2} \\
\hline
\end{gathered}
$$

Alternative Moment Selection Procedures

Downward J-test
Use Full instrument set unless J-test rejects.
Andrews (1999) - GMM Moment Selection Criteria
$\operatorname{GMM}-\operatorname{MSC}(S)=J_{n}(S)-$ Bonus
Hall \& Peixe (2003) - Canonical Correlations Info. Criterion
$\operatorname{CCIC}(S)=n \log \left[1-R_{n}^{2}(S)\right]+$ Penalty
Penalty/Bonus Terms
Analogies to AIC, BIC, and Hannan-Quinn

Empirical Example: Geography or Institutions?

Institutions Rule
Acemoglu et al. (2001), Rodrik et al. (2004), Easterly \& Levine (2003) - zero or negligible effects of "tropics, germs, and crops" in income per capita, controlling for institutions.

Institutions Don't Rule
Sachs (2003) - Large negative direct effect of malaria transmission on income.

Carstensen \& Gundlach (2006)
How robust is Sachs's result?

Carstensen \& Gundlach (2006)

Both Regressors Endogenous
\ln GDPC $_{i}=\beta_{1}+\beta_{2} \cdot$ INSTITUTIONS $_{i}+\beta_{3} \cdot$ MALARIA $_{i}+\epsilon_{i}$
Robustness

- Various measures of INSTITUTIONS, MALARIA
- Various instrument sets
- β_{3} remains large, negative and significant.

2SLS for All Results That Follow

Expand on Instrument Selection Exercise

FMSC and Corrected Confidence Intervals

1. FMSC - which instruments to estimate effect of malaria?
2. Correct Cls for Instrument Selection - effect of malaria still negative and significant?

Measures of INSTITUTIONS and MALARIA

- rule - Average governance indicator (Kaufmann, Kray and Mastruzzi; 2004)
- malfal - Proportion of population at risk of malaria transmission in 1994 (Sachs, 2001)

Instrument Sets

Baseline Instruments - Assumed Valid

- Inmort - Log settler mortality (per 1000), early 19th century
- maleco - Index of stability of malaria transmission

Further Instrument Blocks
Climate frost, humid, latitude
Europe eurfrac, engfrac
Openness coast, trade

	$\mu=$ malfal			$\mu=$ rule		
	FMSC	posFMSC	$\widehat{\mu}$	FMSC	posFMSC	$\widehat{\mu}$
(1) Valid	3.0	3.0	-1.0	1.3	1.3	0.9
(2) Climate	3.1	3.1	-0.9	1.0	1.0	1.0
(3) Open	2.3	2.4	-1.1	1.2	1.2	0.8
(4) Eur	1.8	2.2	-1.1	0.5	0.7	0.9
(5) Climate, Eur	0.9	2.0	-1.0	0.3	0.6	0.9
(6) Climate, Open	1.9	2.3	-1.0	0.5	0.8	0.9
(7) Open, Eur	1.6	1.8	-1.2	0.8	0.8	0.8
(8) Full	0.5	1.7	-1.1	0.2	0.6	0.8
$>90 \%$ CI FMSC		$(-1.6,-0.6)$			$(0.5,1.2)$	
$>90 \%$ CI posFMSC		$(-1.6,-0.6)$			$(0.6,1.3)$	

Lecture \#7 - High-Dimensional Regression I

QR Decomposition

Singular Value Decomposition

Ridge Regression

Comparing OLS and Ridge

QR Decomposition

Result

Any $n \times k$ matrix A with full column rank can be decomposed as $A=Q R$, where R is an $k \times k$ upper triangular matrix and Q is an $n \times k$ matrix with orthonormal columns.

Notes

- Columns of A are orthogonalized in Q via Gram-Schmidt.
- Since Q has orthogonal columns, $Q^{\prime} Q=I_{k}$.
- It is not in general true that $Q Q^{\prime}=I$.
- If A is square, then $Q^{-1}=Q^{\prime}$.

Different Conventions for the QR Decomposition

Thin aka Economical QR
Q is an $n \times k$ with orthonormal columns (qr_econ in Armadillo).
Thick QR
Q is an $n \times n$ orthogonal matrix.
Relationship between Thick and Thin
Let $A=Q R$ be the "thick" $Q R$ and $A=Q_{1} R_{1}$ be the "thin" QR:

$$
A=Q R=Q\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q_{1} R_{1}
$$

My preferred convention is the thin QR...

Least Squares via QR Decomposition

Let $X=Q R$

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left[(Q R)^{\prime}(Q R)\right]^{-1}(Q R)^{\prime} y \\
& =\left[R^{\prime} Q^{\prime} Q R\right]^{-1} R^{\prime} Q^{\prime} y=\left(R^{\prime} R\right)^{-1} R^{\prime} Q y \\
& =R^{-1}\left(R^{\prime}\right)^{-1} R^{\prime} Q^{\prime} y=R^{-1} Q^{\prime} y
\end{aligned}
$$

In other words, $\widehat{\beta}$ solves $R \beta=Q^{\prime} y$.
Why Bother?
Much easier and faster to solve $R \beta=Q^{\prime} y$ than the normal equations ($\left.X^{\prime} X\right) \beta=X^{\prime} y$ since R is upper triangular.

Back-Substitution to Solve $R \beta=Q^{\prime} y$

The product $Q^{\prime} y$ is a vector, call it v, so the system is simply
$\left[\begin{array}{cccccc}r_{11} & r_{12} & r_{13} & \cdots & r_{1, n-1} & r_{1 k} \\ 0 & r_{22} & r_{23} & \cdots & r_{2, n-1} & r_{2 k} \\ 0 & 0 & r_{33} & \cdots & r_{3, n-1} & r_{3 k} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & r_{k-1, k-1} & r_{k-1, k} \\ 0 & 0 & \cdots & 0 & 0 & r_{k}\end{array}\right]\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \vdots \\ \beta_{k-1} \\ \beta_{k}\end{array}\right]=\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{k-1} \\ v_{k}\end{array}\right]$
$\beta_{k}=v_{k} / r_{k} \Rightarrow$ substitute this into $\beta_{k-1} r_{k-1, k-1}+\beta_{k} r_{k-1, k}=v_{k-1}$ to solve for β_{k-1}, and so on.

Calculating the Least Squares Variance Matrix $\sigma^{2}\left(X^{\prime} X\right)^{-1}$

- Since $X=Q R,\left(X^{\prime} X\right)^{-1}=R^{-1}\left(R^{-1}\right)^{\prime}$
- Easy to invert R : just apply repeated back-substitution:
- Let $A=R^{-1}$ and \mathbf{a}_{j} be the j th column of A.
- Let \mathbf{e}_{j} be the j th standard basis vector.
- Inverting R is equivalent to solving $R \mathbf{a}_{1}=\mathbf{e}_{1}$, followed by

$$
R \mathbf{a}_{2}=\mathbf{e}_{2}, \ldots, R \mathbf{a}_{k}=\mathbf{e}_{k} .
$$

- If you enclose a matrix in trimatu() or trimatl(), and request the inverse \Rightarrow Armadillo will carry out backward or forward substitution, respectively.

QR Decomposition for Orthogonal Projections

Let X have full column rank and define $P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$

$$
P_{X}=Q R\left(R^{\prime} R\right)^{-1} R^{\prime} Q^{\prime}=Q R R^{-1}\left(R^{\prime}\right)^{-1} R^{\prime} Q^{\prime}=Q Q^{\prime}
$$

It is not in general true that $Q Q^{\prime}=I$ even though $Q^{\prime} Q=I$ since
Q need not be square in the economical $Q R$ decomposition.

The Singular Value Decomposition (SVD)

Any $m \times n$ matrix A of arbitrary rank r can be written

$$
A=U D V^{\prime}=\text { (orthogonal)(diagonal)(orthogonal) }
$$

- U $U=m \times m$ orthog. matrix whose cols contain e-vectors of $A A^{\prime}$
- $V=n \times n$ orthog. matrix whose cols contain e-vectors of $A^{\prime} A$
- $D=m \times n$ matrix whose first r main diagonal elements are the singular values d_{1}, \ldots, d_{r}. All other elements are zero.
- The singular values d_{1}, \ldots, d_{r} are the square roots of the non-zero eigenvalues of $A^{\prime} A$ and $A A^{\prime}$.
- (E-values of $A^{\prime} A$ and $A A^{\prime}$ could be zero but not negative)

SVD for Symmetric Matrices

If A is symmetric then $A=Q \wedge Q^{\prime}$ where Λ is a diagonal matrix containing the e-values of A and Q is an orthonormal matrix whose columns are the corresponding e-vectors. Accordingly:

$$
A A^{\prime}=\left(Q \wedge Q^{\prime}\right)\left(Q \wedge Q^{\prime}\right)^{\prime}=Q \wedge Q^{\prime} Q \wedge Q^{\prime}=Q \wedge^{2} Q^{\prime}
$$

and similarly

$$
A^{\prime} A=\left(Q \wedge Q^{\prime}\right)^{\prime}\left(Q \wedge Q^{\prime}\right)=Q \wedge Q^{\prime} Q \wedge Q^{\prime}=Q \wedge^{2} Q^{\prime}
$$

using the fact that Q is orthogonal and Λ diagonal. Thus, when A is symmetric the SVD reduces to $U=V=Q$ and $D=\sqrt{\Lambda^{2}}$ so that negative eigenvalues become positive singular values.

The Economical SVD

- Number of singular values is $r=\operatorname{Rank}(A) \leq \max \{m, n\}$
- Some cols of U or V multiplied by zeros in D
- Economical SVD: only keep columns in U and V that are multiplied by non-zeros in D (Armadillo: svd_econ)
- Summation form: $A=\sum_{i=1}^{r} d_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\prime}$ where $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$
- Matrix form: $\underset{(n \times p)}{A}=\underset{(n \times r)(r \times r)(r \times p)}{ }{ }^{\prime}$

In the economical SVD, U and V may no longer be square, so they are not orthogonal matrices but their columns are still orthonormal.

Ridge Regression - OLS with an L_{2} Penalty

$$
\widehat{\beta}_{\text {Ridge }}=\underset{\beta}{\arg \min }(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta)+\lambda \beta^{\prime} \beta
$$

- Add a penalty for large coefficients
- $\lambda=$ non-negative constant we choose: strength of penalty
- X and \mathbf{y} assumed to be de-meaned (don't penalize intercept)
- Unlike OLS, Ridge Regression is not scale invariant
- In OLS if we replace \mathbf{x}_{1} with $c \mathbf{x}_{1}$ then β_{1} becomes β_{1} / c.
- The same is not true for ridge regression!
- Typical to standardize X before carrying out ridge regression

Alternative Formulation of Ridge Regression Problem

$$
\widehat{\beta}_{\text {Ridge }}=\underset{\beta}{\arg \min }(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta) \quad \text { subject to } \quad \beta^{\prime} \beta \leq t
$$

- Ridge Regression is like least squares "on a budget."
- Make one coefficient larger \Rightarrow must make another one smaller.
- One-to-one mapping from t to λ (data-dependent)

Ridge as Bayesian Linear Regression

If we ignore the intercept, which is unpenalized, Ridge Regression gives the posterior mode from the Bayesian regression model:

$$
\begin{aligned}
y \mid X, \beta, \sigma^{2} & \sim N\left(X \beta, \sigma^{2} I_{n}\right) \\
\beta & \sim N\left(\mathbf{0}, \tau^{2} I_{p}\right)
\end{aligned}
$$

where σ^{2} is assumed known and $\lambda=\sigma^{2} / \tau^{2}$. (In this example, the posterior is normal so the mode equals the mean)

Explicit Solution to the Ridge Regression Problem

Objective Function:

$$
\begin{aligned}
Q(\beta) & =(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta)+\lambda \beta^{\prime} \beta \\
& =\mathbf{y}^{\prime} \mathbf{y}-\beta^{\prime} X \mathbf{y}-\mathbf{y}^{\prime} X \beta+\beta^{\prime} X^{\prime} X \beta+\lambda \beta^{\prime} I_{p} \beta \\
& =\mathbf{y}^{\prime} \mathbf{y}-2 \mathbf{y}^{\prime} X \beta+\beta^{\prime}\left(X^{\prime} X+\lambda I_{p}\right) \beta
\end{aligned}
$$

Recall the following facts about matrix differentiation

$$
\partial\left(\mathbf{a}^{\prime} \mathbf{x}\right) / \partial \mathbf{x}=\mathbf{a}, \quad \partial\left(\mathbf{x}^{\prime} A \mathbf{x}\right) / \partial \mathbf{x}=\left(A+A^{\prime}\right) \mathbf{x}
$$

Thus, since $\left(X^{\prime} X+\lambda I_{p}\right)$ is symmetric,

$$
\frac{\partial}{\partial \beta} Q(\beta)=-2 X^{\prime} \mathbf{y}+2\left(X^{\prime} X+\lambda I_{p}\right) \beta
$$

Explicit Solution to the Ridge Regression Problem

Previous Slide:

$$
\frac{\partial}{\partial \beta} Q(\beta)=-2 X^{\prime} \mathbf{y}+2\left(X^{\prime} X+\lambda I_{p}\right) \beta
$$

First order condition:

$$
X^{\prime} \mathbf{y}=\left(X^{\prime} X+\lambda I_{p}\right) \beta
$$

Hence,

$$
\widehat{\beta}_{\text {Ridge }}=\left(X^{\prime} X+\lambda I_{p}\right)^{-1} X^{\prime} \mathbf{y}
$$

But is $\left(X^{\prime} X+\lambda I_{p}\right)$ guaranteed to be invertible?

Ridge Regresion via OLS with "Dummy Observations"

Ridge regression solution is identical to

$$
\underset{\beta}{\arg \min }(\widetilde{\mathbf{y}}-\widetilde{X} \beta)^{\prime}(\widetilde{\mathbf{y}}-\widetilde{X} \beta)
$$

where

$$
\widetilde{\mathbf{y}}=\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{0}_{p}
\end{array}\right], \quad \widetilde{X}=\left[\begin{array}{c}
X \\
\sqrt{\lambda} /_{p}
\end{array}\right]
$$

since:

$$
\begin{aligned}
(\widetilde{\mathbf{y}}-\widetilde{X} \beta)^{\prime}(\widetilde{\mathbf{y}}-\widetilde{X} \beta) & =\left[\begin{array}{ll}
(\mathbf{y}-X \beta)^{\prime} & (-\sqrt{\lambda} \beta)^{\prime}
\end{array}\right]\left[\begin{array}{c}
(\mathbf{y}-X \beta) \\
-\sqrt{\lambda} \beta
\end{array}\right] \\
& =(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta)+\lambda \beta^{\prime} \beta
\end{aligned}
$$

Ridge Regression Solution is Always Unique

Ridge solution is always unique, even if there are more regressors than observations! This follows from the preceding slide:

$$
\begin{aligned}
\widehat{\beta}_{\text {Ridge }} & =\underset{\beta}{\arg \min }(\widetilde{\mathbf{y}}-\widetilde{X} \beta)^{\prime}(\widetilde{\mathbf{y}}-\widetilde{X} \beta) \\
\widetilde{\mathbf{y}} & =\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{0}_{p}
\end{array}\right], \widetilde{X}=\left[\begin{array}{c}
X \\
\sqrt{\lambda} I_{p}
\end{array}\right]
\end{aligned}
$$

Columns of $\sqrt{\lambda} I_{p}$ are linearly independent, so columns of \widetilde{X} are also linearly independent, regardless of whether the same holds for the columns of X.

Efficient Calculations for Ridge Regression

QR Decomposition
Write Ridge as OLS with "dummy observations" with $\widetilde{X}=Q R$ so

$$
\widehat{\beta}_{R i d g e}=\left(\widetilde{X}^{\prime} \widetilde{X}\right)^{-1} \widetilde{X}^{\prime} \widetilde{\mathbf{y}}=R^{-1} Q^{\prime} \widetilde{\mathbf{y}}
$$

which we can obtain by back-solving the system $R \widehat{\beta}_{\text {Ridge }}=Q^{\prime} \widetilde{\mathbf{y}}$.

Singular Value Decomposition

If $p \gg n$, it's much faster to use the SVD rather than the QR decomposition because the rank of X will be n. For implementation details, see Murphy (2012; Section 7.5.2).

Comparing Ridge and OLS

Assumption

Centered data matrix $\underset{(n \times p)}{X}$ with rank p so OLS estimator is unique.
Economical SVD

- $\underset{(n \times p)}{X}=\underset{(n \times p)(p \times p)(p \times p)}{D} \underset{V^{\prime}}{V^{\prime}}$ with $U^{\prime} U=V^{\prime} V=I_{p}, D$ diagonal
- Hence: $X^{\prime} X=\left(U D V^{\prime}\right)^{\prime}\left(U D V^{\prime}\right)=V D U^{\prime} U D V^{\prime}=V D^{2} V^{\prime}$
- Since V is square it is an orthogonal matrix: $V V^{\prime}=I_{p}$

Comparing Ridge and OLS - The "Hat Matrix"

Using $X=U D V^{\prime}$ and the fact that V is orthogonal,

$$
\begin{aligned}
H(\lambda) & =X\left(X^{\prime} X+\lambda I_{p}\right)^{-1} X^{\prime}=U D V^{\prime}\left(V D^{2} V+\lambda V V^{\prime}\right)^{-1} V D U^{\prime} \\
& =U D V^{\prime}\left(V D^{2} V^{\prime}+\lambda V V^{\prime}\right)^{-1} V D U^{\prime} \\
& =U D V^{\prime}\left[V\left(D^{2}+\lambda I_{p}\right) V^{\prime}\right]^{-1} V D U^{\prime} \\
& =U D V^{\prime}\left(V^{\prime}\right)^{-1}\left(D^{2}+\lambda I_{p}\right)^{-1}(V)^{-1} V D U^{\prime} \\
& =U D V^{\prime} V\left(D^{2}+\lambda I_{p}\right)^{-1} V^{\prime} V D U^{\prime} \\
& =U D\left(D^{2}+\lambda I_{p}\right)^{-1} D U^{\prime}
\end{aligned}
$$

Model Complexity of Ridge Versus OLS

OLS Case
Number of free parameters equals number of parameters p.
Ridge is more complicated
Even though there are parameters they are constrained!
Idea: use trace of $H(\lambda)$
$\operatorname{df}(\lambda)=\operatorname{tr}\{H(\lambda)\}=\operatorname{tr}\left\{X\left(X^{\prime} X+\lambda I_{p}\right)^{-1} X^{\prime}\right\}$
Why? Works for OLS: $\lambda=0$
$\mathrm{df}(0)=\operatorname{tr}\{H(0)\}=\operatorname{tr}\left\{X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\}=p$

Effective Degrees of Freedom for Ridge Regression

Using cyclic permutation property of trace:

$$
\begin{aligned}
\operatorname{df}(\lambda) & =\operatorname{tr}\{H(\lambda)\}=\operatorname{tr}\left\{X\left(X^{\prime} X+\lambda I_{p}\right)^{-1} X^{\prime}\right\} \\
& =\operatorname{tr}\left\{U D\left(D^{2}+\lambda I_{p}\right)^{-1} D U^{\prime}\right\} \\
& =\operatorname{tr}\left\{D U^{\prime} U D\left(D^{2}+\lambda I_{p}\right)^{-1}\right\} \\
& =\operatorname{tr}\left\{D^{2}\left(D^{2}+\lambda I_{p}\right)^{-1}\right\} \\
& =\sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}
\end{aligned}
$$

- $\operatorname{df}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$
- $\operatorname{df}(\lambda)=p$ when $\lambda=0$
- $\operatorname{df}(\lambda)<p$ when $\lambda>0$

Comparing the MSE of OLS and Ridge

Assumptions
$y=X \beta+\varepsilon$, Fixed X, iid data, homoskedasticity
OLS Estimator: $\widehat{\beta}$
$\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \Longrightarrow \operatorname{Bias}(\widehat{\beta})=0 \quad \operatorname{Var}(\widehat{\beta})=\sigma\left(X^{\prime} X\right)^{-1}$
Ridge Estimator: $\widetilde{\beta}_{\lambda}$
$\widehat{\beta}_{\lambda}=\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} y \Longrightarrow \operatorname{Bias}\left(\widetilde{\beta}_{\lambda}\right)=? \quad \operatorname{Var}\left(\widetilde{\beta}_{\lambda}\right)=?$

Calculating The Bias of Ridge Regression

 X fixed (or condition or X)$$
\begin{aligned}
\operatorname{Bias}\left(\widetilde{\beta}_{\lambda}\right) & =\mathbb{E}\left[\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime}(X \beta+\varepsilon)-\beta\right] \\
& =\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X+\lambda I\right)^{-1} \underbrace{\mathbb{E}\left[X^{\prime} \varepsilon\right]}_{0}-\beta \\
& =\left(X^{\prime} X+\lambda I\right)^{-1}\left[\left(X^{\prime} X+\lambda I\right) \beta-\lambda \beta\right]-\beta \\
& =\beta-\lambda\left(X^{\prime} X+\lambda I\right)^{-1} \beta-\beta \\
& =-\lambda\left(X^{\prime} X+\lambda I\right)^{-1} \beta
\end{aligned}
$$

Calculating the Variance of Ridge Regression

 X fixed (or condition or X)$$
\begin{aligned}
\operatorname{Var}\left(\widetilde{\beta}_{\lambda}\right) & =\operatorname{Var}\left[\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime}(X \beta+\varepsilon)\right] \\
& =\operatorname{Var}\left[\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} \varepsilon\right] \\
& =\mathbb{E}\left[\left\{\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} \varepsilon\right\}\left\{\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} \varepsilon\right\}^{\prime}\right] \\
& =\left[\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime}\right] \underbrace{\mathbb{E}\left[\varepsilon \varepsilon^{\prime}\right]}_{\sigma^{2} I}\left[\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime}\right]^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X+\lambda I\right)^{-1} X^{\prime} X\left(X^{\prime} X+\lambda I\right)^{-1}
\end{aligned}
$$

For λ Sufficiently Small, MSE(OLS) $>$ MSE(Ridge)

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\beta})-\operatorname{MSE}\left(\widetilde{\beta}_{\lambda}\right) & =\left\{\operatorname{Bias}^{2}(\widehat{\beta})+\operatorname{Var}(\widehat{\beta})\right\}-\left\{\operatorname{Bias}^{2}\left(\widetilde{\beta}_{\lambda}\right)+\operatorname{Var}\left(\widetilde{\beta}_{\lambda}\right)\right\} \\
& \vdots \\
& =\lambda \underbrace{\left(X^{\prime} X+\lambda I\right)^{-1}}_{M^{\prime}} \underbrace{\left[\sigma^{2}\left\{2 I+\lambda\left(X^{\prime} X\right)^{-1}\right\}-\lambda \beta \beta^{\prime}\right]}_{A} \underbrace{\left(X^{\prime} X+\lambda I\right)^{-1}}_{M}
\end{aligned}
$$

- $\lambda>0$ and M is symmetric
- M is full rank $\Longrightarrow M v \neq 0$ unless $v=0$
- $\Longrightarrow v^{\prime}\left[\lambda M^{\prime} A M\right] v=\lambda(M v)^{\prime} A(M v)$
- MSE(OLS) - MSE(Ridge) is PD iff M is PD
- To ensure M is PD, make λ small, e.g. $0<\lambda<2 \sigma^{2} / \beta^{\prime} \beta$

Lecture \#8 - High-Dimensional Regression II

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO)

Bühlmann \& van de Geer (2011); Hastie, Tibshirani \& Wainwright (2015)

Assume that X has been centered: don't penalize intercept!
Notation
$\|\beta\|_{2}^{2}=\sum_{j=1}^{p} \beta_{j}^{2}, \quad\|\beta\|_{1}=\sum_{j=1}^{p}\left|\beta_{j}\right|$
Ridge Regression - L_{2} Penalty
$\widehat{\beta}_{\text {Ridge }}=\arg \min (\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta)+\lambda\|\beta\|_{2}^{2}$
LASSO - L_{1} Penalty
$\widehat{\beta}_{\text {Lasso }}=\underset{\beta}{\arg \min }(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta)+\lambda\|\beta\|_{1}$

Other Ways of Thinking about LASSO

Constrained Optimization

$\underset{\beta}{\arg \min }(\mathbf{y}-X \beta)^{\prime}(\mathbf{y}-X \beta) \quad$ subject to $\quad \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t$
Data-dependent, one-to-one mapping between λ and t.

Bayesian Posterior Mode

Ignoring the intercept, LASSO is the posterior mode for β under

$$
\mathbf{y} \mid X, \beta, \sigma^{2} \sim N\left(X \beta, \sigma^{2} I_{n}\right), \quad \beta \sim \prod_{j=1}^{p} \operatorname{Lap}\left(\beta_{j} \mid 0, \tau\right)
$$

where $\lambda=1 / \tau$ and $\operatorname{Lap}(x \mid \mu, \tau)=(2 \tau)^{-1} \exp \left\{-\tau^{-1}|x-\mu|\right\}$

Comparing Ridge and LASSO - Bayesian Posterior Modes

Figure: Ridge, at left, puts a normal prior on β while LASSO, at right, uses a Laplace prior, which has fatter tails and a taller peak at zero.

Comparing LASSO and Ridge - Constrained OLS

Figure: $\widehat{\beta}$ denotes the MLE and the ellipses are the contours of the likelihood. LASSO, at left, and Ridge, at right, both shrink β away from the MLE towards zero. Because of its diamond-shaped constraint set, however, LASSO favors a sparse solution while Ridge does not

No Closed-Form for LASSO!

Simple Special Case
Suppose that $X^{\prime} X=I_{p}$
Maximum Likelihood
$\widehat{\boldsymbol{\beta}}_{\text {MLE }}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}=X^{\prime} \mathbf{y}, \quad \widehat{\beta}_{j}^{M L E}=\sum_{i=1}^{n} x_{i j} y_{i}$
Ridge Regression
$\widehat{\boldsymbol{\beta}}_{\text {Ridge }}=\left(X^{\prime} X+\lambda /_{p}\right)^{-1} X^{\prime} \mathbf{y}=\left[(1+\lambda) I_{p}\right]^{-1} \widehat{\boldsymbol{\beta}}_{\text {MLE }}, \quad \widehat{\beta}_{j}^{\text {Ridge }}=\frac{\widehat{\beta}_{j}^{\text {MLE }}}{1+\lambda}$ So what about LASSO?

LASSO when $X^{\prime} X=I_{p}$ so $\widehat{\beta}_{M L E}=X^{\prime} \mathbf{y}$
Want to Solve

$$
\widehat{\boldsymbol{\beta}}_{\text {LASSO }}=\underset{\boldsymbol{\beta}}{\arg \min }(\mathbf{y}-X \boldsymbol{\beta})^{\prime}(\mathbf{y}-X \boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1}
$$

Expand First Term

$$
\begin{aligned}
(\mathbf{y}-X \boldsymbol{\beta})^{\prime}(\mathbf{y}-X \boldsymbol{\beta}) & =\mathbf{y}^{\prime} \mathbf{y}-2 \boldsymbol{\beta}^{\prime} X^{\prime} \mathbf{y}+\boldsymbol{\beta}^{\prime} X^{\prime} X \boldsymbol{\beta} \\
& =\text { (constant) }-2 \boldsymbol{\beta}^{\prime} \widehat{\boldsymbol{\beta}}_{M L E}+\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\text {LASSO }} & =\underset{\boldsymbol{\beta}}{\arg \min }\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}-2 \boldsymbol{\beta}^{\prime} \widehat{\boldsymbol{\beta}}_{M L E}\right)+\lambda\|\boldsymbol{\beta}\|_{1} \\
& =\underset{\boldsymbol{\beta}}{\arg \min } \sum_{j=1}^{p}\left(\beta_{j}^{2}-2 \beta_{j} \widehat{\beta}_{j}^{M L E}+\lambda\left|\beta_{j}\right|\right)
\end{aligned}
$$

LASSO when $X^{\prime} X=I_{p}$

Preceding Slide

$$
\widehat{\boldsymbol{\beta}}_{\text {LASSO }}=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{j=1}^{p}\left(\beta_{j}^{2}-2 \beta_{j} \widehat{\beta}_{j}^{M L E}+\lambda\left|\beta_{j}\right|\right)
$$

Key Simplification
Equivalent to solving j independent optimization problems:

$$
\widehat{\beta}_{j}^{\text {Lasso }}=\underset{\beta_{j}}{\arg \min }\left(\beta_{j}^{2}-2 \beta_{j} \widehat{\beta}_{j}^{M L E}+\lambda\left|\beta_{j}\right|\right)
$$

- Sign of β_{j}^{2} and $\lambda\left|\beta_{j}\right|$ unaffected by $\operatorname{sign}\left(\beta_{j}\right)$
- $\widehat{\beta}_{j}^{M L E}$ is a function of data only - outside our control
- Minimization requires matching $\operatorname{sign}\left(\beta_{j}\right)$ to $\operatorname{sign}\left(\widehat{\beta}_{j}^{M L E}\right)$

LASSO when $X^{\prime} X=I_{p}$

$$
\text { Case I: } \widehat{\beta}^{M L E}>0 \Longrightarrow \beta_{j}>0 \Longrightarrow\left|\beta_{j}\right|=\beta_{j}
$$

Optimization problem becomes

$$
\widehat{\beta}_{j}^{\text {Lasso }}=\underset{\beta_{j}}{\arg \min } \beta_{j}^{2}-2 \beta_{j} \widehat{\beta}_{j}^{M L E}+\lambda \beta_{j}
$$

Interior solution:

$$
\beta_{j}^{*}=\widehat{\beta}_{j}^{M L E}-\frac{\lambda}{2}
$$

Can't have $\beta_{j}<0$: corner solution sets $\beta_{j}=0$

$$
\widehat{\beta}_{j}^{\text {Lasso }}=\max \left\{0, \widehat{\beta}_{j}^{M L E}-\frac{\lambda}{2}\right\}
$$

LASSO when $X^{\prime} X=I_{p}$

Case II: $\widehat{\beta}^{M L E} \leq 0 \Longrightarrow \beta_{j} \leq 0 \Longrightarrow\left|\beta_{j}\right|=-\beta_{j}$
Optimization problem becomes

$$
\widehat{\beta}_{j}^{\text {Lasso }}=\underset{\beta_{j}}{\arg \min } \beta_{j}^{2}-2 \beta_{j} \widehat{\beta}_{j}^{M L E}-\lambda \beta_{j}
$$

Interior solution:

$$
\widehat{\beta}_{j}=\widehat{\beta}_{j}^{M L E}+\frac{\lambda}{2}
$$

Can't have $\beta_{j}>0$: corner solution sets $\beta_{j}=0$

$$
\widehat{\beta}_{j}^{L a s s o}=\min \left\{0, \widehat{\beta}_{j}^{M L E}+\frac{\lambda}{2}\right\}
$$

Ridge versus LASSO when $X^{\prime} X=I_{p}$

Figure: Horizontal axis in each plot is MLE

$$
\begin{aligned}
\widehat{\beta}_{j}^{\text {Ridge }} & =\left(\frac{1}{1+\lambda}\right) \widehat{\beta}_{j}^{M L E} \\
\widehat{\beta}_{j}^{\text {Lasso }} & =\operatorname{sign}\left(\widehat{\beta}_{j}^{M L E}\right) \max \left\{0,\left|\widehat{\beta}_{j}^{M L E}\right|-\frac{\lambda}{2}\right\}
\end{aligned}
$$

Calculating LASSO - The Shooting Algorithm

Cyclic Coordinate Descent

Data: $\mathbf{y}, X, \lambda \geq 0, \varepsilon>0$
Result: LASSO Solution
$\boldsymbol{\beta} \leftarrow \operatorname{ridge}(X, \mathbf{y}, \lambda)$
repeat
$\boldsymbol{\beta}^{\text {prev }} \leftarrow \boldsymbol{\beta}$
for $j=1, \ldots, p$ do
$a_{j} \leftarrow 2 \sum_{i} x_{i j}^{2}$
$c_{j} \leftarrow 2 \sum_{i} x_{i j}\left(y_{i}-\mathbf{x}_{i}^{\prime} \beta+\beta_{j} x_{i j}\right)$
$\beta_{j} \leftarrow \operatorname{sign}\left(c_{j} / a_{j}\right) \max \left\{0,\left|c_{j} / a_{j}\right|-\lambda / a_{j}\right\}$
end
until $\left|\boldsymbol{\beta}-\boldsymbol{\beta}^{\text {prev }}\right|<\varepsilon$;

Coordinate Updates in the Shooting Algorithm

$$
\begin{gathered}
\frac{\partial}{\partial \beta_{j}}(\mathbf{y}-X \boldsymbol{\beta})^{\prime}(\mathbf{y}-X \boldsymbol{\beta})=a_{j} \beta_{j}-c_{j} \\
a_{j} \equiv 2 \sum_{i=1}^{n} x_{i j}^{2} \\
c_{j} \equiv 2 \sum_{i=1}^{n} x_{i j}(\underbrace{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\beta_{j} x_{i j}}_{\text {Residual excluding } x_{i j}}) \\
\beta_{j}^{\text {New }}=\left\{\begin{array}{r}
\left(c_{j}+\lambda\right) / a_{j}, \\
0, \\
0, \\
c_{j}<-\lambda \\
\left(c_{j}-\lambda\right) / a_{j}, \\
c_{j}>\lambda
\end{array}\right.
\end{gathered}
$$

Prediction Error of LASSO

Punchline

With the appropriate choice of λ, Lasso can make very good predictions even when p is much larger than n, so long as $\sum_{j=1}^{p}\left|\beta_{j}\right|$ is small.

Sparsity?

One way to have small $\sum_{j=1}^{p}\left|\beta_{j}\right|$ is if β is sparse, i.e. $\beta_{j}=0$ for most j, but sparsity is not required.

We'll look at a simple example. . .

Prediction Error of LASSO: Simple Example

Suppose that:

- X and \mathbf{y} are centered
- X is fixed and scaled so that $\mathbf{x}_{j}^{\prime} \mathbf{x}_{j}=n$
- $\mathbf{y}=X \boldsymbol{\beta}_{0}+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2} I\right)$.
- $\lambda=c \sigma \sqrt{\log (p) / n}$ where c is a constant

Theorem
Let $\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min } \frac{1}{2 n}\|\mathbf{y}-X \boldsymbol{\beta}\|_{2}^{2}+\lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}$. Then,

$$
\mathbb{P}\left(\frac{1}{n}\left\|X \boldsymbol{\beta}_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}\right) \geq 1-p^{-\left(c^{2} / 2-1\right)}
$$

What Does This Mean?

$$
\mathbb{P}\left(\frac{1}{n}\left\|X \beta_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}\right) \geq 1-p^{-\left(c^{2} / 2-1\right)}
$$

Notation
$\|\mathbf{z}\|_{2}^{2} \equiv \mathbf{z}^{\prime} \mathbf{z}, \quad\|\boldsymbol{\alpha}\|_{1} \equiv \sum_{j=1}^{p}\left|\alpha_{j}\right|$
Convenient Scaling
Divide RSS by $2 n: \quad \widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min } \frac{1}{2 n}\|\mathbf{y}-X \boldsymbol{\beta}\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{1}$
Prediction Error Comparison
Optimal: $\boldsymbol{\varepsilon}=\mathbf{y}-X \boldsymbol{\beta}_{0} \quad$ Lasso: $\widehat{\boldsymbol{\varepsilon}}=\boldsymbol{y}-X \widehat{\boldsymbol{\beta}}$

$$
\frac{1}{n}\|\widehat{\boldsymbol{\varepsilon}}-\boldsymbol{\varepsilon}\|_{2}^{2}=\frac{1}{n}\left\|(\mathbf{y}-X \widehat{\boldsymbol{\beta}})-\left(\mathbf{y}-X \boldsymbol{\beta}_{0}\right)\right\|_{2}^{2}=\frac{1}{n}\left\|X \boldsymbol{\beta}_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2}
$$

What Does This Mean?

$$
\mathbb{P}\left(\frac{1}{n}\left\|X \boldsymbol{\beta}_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}\right) \geq 1-p^{-\left(c^{2} / 2-1\right)}
$$

Recall
$\lambda=c \sigma \sqrt{\log (p) / n}, \quad \varepsilon \sim N\left(0, \sigma^{2} l\right)$
We choose c
Larger $c \Longrightarrow$ higher probability that the bound obtains:

$$
\begin{aligned}
& c=2 \Longrightarrow 1-p^{-\left(c^{2} / 2-1\right)}=1-1 / p \\
& c=3 \Longrightarrow 1-p^{-\left(c^{2} / 2-1\right)}=1-p^{-7 / 2} \\
& c=4 \Longrightarrow 1-p^{-\left(c^{2} / 2-1\right)}=1-p^{-7}
\end{aligned}
$$

What Does This Mean?

$$
\mathbb{P}\left(\frac{1}{n}\left\|X \beta_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}\right) \geq 1-p^{-\left(c^{2} / 2-1\right)}
$$

Recall
$\lambda=c \sigma \sqrt{\log (p) / n}, \quad \varepsilon \sim N\left(0, \sigma^{2} I\right)$
We choose c
Larger $c \Longrightarrow$ looser bound:

$$
\begin{aligned}
& c=2 \Longrightarrow 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}=8 \sigma \sqrt{\log (p) / n} \times\left\|\boldsymbol{\beta}_{0}\right\|_{1} \\
& c=3 \Longrightarrow 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}=12 \sigma \sqrt{\log (p) / n} \times\left\|\boldsymbol{\beta}_{0}\right\|_{1} \\
& c=4 \Longrightarrow 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}=16 \sigma \sqrt{\log (p) / n} \times\left\|\boldsymbol{\beta}_{0}\right\|_{1}
\end{aligned}
$$

We can allow $p \gg n$ provided $\|\boldsymbol{\beta}\|_{1}$ is small

$$
\mathbb{P}\left(\frac{1}{n}\left\|X \beta_{0}-X \widehat{\boldsymbol{\beta}}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}_{0}\right\|_{1}\right) \geq 1-p^{-\left(c^{2} / 2-1\right)}
$$

Recall

$$
\lambda=c \sigma \sqrt{\log (p) / n}, \quad \varepsilon \sim N\left(0, \sigma^{2} l\right)
$$

p	n	$\sqrt{\log (p) / n}$
100	100	0.21
1000	1000	0.08
1000	100	0.26
10000	1000	0.10
10000	100	0.30
100000	1000	0.11

Lecture \#9 - High-Dimensional Regression III

Principal Component Analysis (PCA)

Principal Components Regression

Comparing OLS, Ridge, and PCR

Overview of Factor Models

Choosing the Number of Factors

Diffusion Index Forecasting

Principal Component Analysis (PCA)

Notation
Let \mathbf{x} be a $p \times 1$ random vector with variance-covariance matrix Σ.
Optimization Problem

$$
\boldsymbol{\alpha}_{1}=\underset{\boldsymbol{\alpha}}{\arg \max } \operatorname{Var}\left(\boldsymbol{\alpha}^{\prime} \mathbf{x}\right) \quad \text { subject to } \quad \boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}=1
$$

First Principal Component
The linear combination $\boldsymbol{\alpha}_{1}^{\prime} \mathbf{x}$ is the first principal component of \mathbf{x}.
The random vector \mathbf{x} has maximal variation in the direction α_{1}.

Solving for $\boldsymbol{\alpha}_{1}$

Lagrangian
$\mathcal{L}\left(\boldsymbol{\alpha}_{1}, \lambda\right)=\boldsymbol{\alpha}^{\prime} \Sigma \boldsymbol{\alpha}-\lambda\left(\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}-1\right)$
First Order Condition
$2\left(\Sigma \boldsymbol{\alpha}_{1}-\lambda \boldsymbol{\alpha}_{1}\right)=0 \Longleftrightarrow\left(\Sigma-\lambda I_{p}\right) \boldsymbol{\alpha}_{1}=0 \Longleftrightarrow \Sigma \boldsymbol{\alpha}_{1}=\lambda \boldsymbol{\alpha}_{1}$
Variance of 1st PC
α_{1} is an e-vector of Σ but which one? Substituting,

$$
\operatorname{Var}\left(\boldsymbol{\alpha}_{1}^{\prime} \mathbf{x}\right)=\boldsymbol{\alpha}_{1}^{\prime}\left(\Sigma \boldsymbol{\alpha}_{1}\right)=\lambda \boldsymbol{\alpha}_{1}^{\prime} \boldsymbol{\alpha}_{1}=\lambda
$$

Solution
Var. of 1st PC equals λ and this is what we want to maximize, so α_{1} is the e-vector corresponding to the largest e-value.

Subsequent Principal Components

Additional Constraint

Construct 2nd PC by solving the same problem as before with the additional constraint that $\boldsymbol{\alpha}_{2}^{\prime} \mathbf{x}$ is uncorrelated with $\boldsymbol{\alpha}_{1}^{\prime} \mathbf{x}$.
j th Principal Component
The linear combination $\alpha_{j}^{\prime} \mathbf{x}$ where $\boldsymbol{\alpha}_{j}$ is the e-vector corresponding to the j th largest e-value of Σ.

Sample PCA

Notation
$X=(n \times p)$ centered data matrix - columns are mean zero.
SVD
$X=U D V^{\prime}$, thus $X^{\prime} X=V D U^{\prime} U D V^{\prime}=V D^{2} V^{\prime}$
Sample Variance Matrix
$S=n^{-1} X^{\prime} X$ has same e-vectors as $X^{\prime} X-$ the columns of $V!$

Sample PCA

Let \mathbf{v}_{j} be the jth column of V. Then,

$$
\begin{aligned}
\mathbf{v}_{j} & =\mathrm{PC} \text { loadings for } j \text { th } \mathrm{PC} \text { of } S \\
\mathbf{v}_{j}^{\prime} \mathbf{x}_{i} & =\mathrm{PC} \text { score for individual/time period } i
\end{aligned}
$$

Sample PCA

PC scores for j th PC

$$
\mathbf{z}_{j}=\left[\begin{array}{c}
z_{j 1} \\
\vdots \\
z_{j n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{j}^{\prime} \mathbf{x}_{1} \\
\vdots \\
\mathbf{v}_{j}^{\prime} \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \mathbf{v}_{j} \\
\vdots \\
\mathbf{x}_{n}^{\prime} \mathbf{v}_{j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right] \mathbf{v}_{j}=X \mathbf{v}_{j}
$$

Getting PC Scores from SVD
Since $X=U D V^{\prime}$ and $V^{\prime} V=I, X V=U D$, i.e.

$$
\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{v}_{i} & \cdots & \mathbf{v}_{p}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r}
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & d_{r}
\end{array}\right]
$$

Hence we see that $\mathbf{z}_{j}=d_{j} \mathbf{u}_{j}$

Properties of PC Scores \mathbf{z}_{j}

Since X has been de-meaned:

$$
\bar{z}_{j}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_{j}^{\prime} \mathbf{x}_{i}=\mathbf{v}_{j}^{\prime}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)=\mathbf{v}_{j}^{\prime} \mathbf{0}=0
$$

Hence, since $X^{\prime} X=V D^{2} V^{\prime}$

$$
\frac{1}{n} \sum_{i=1}^{n}\left(z_{j i}-\bar{z}_{j}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} z_{j i}^{2}=\frac{1}{n} \mathbf{z}_{j}^{\prime} \mathbf{z}_{j}=\frac{1}{n}\left(X \mathbf{v}_{j}\right)^{\prime}\left(X \mathbf{v}_{j}\right)=\mathbf{v}_{j}^{\prime} S \mathbf{v}_{j}=d_{j}^{2} / n
$$

Principal Components Regression (PCR)

1. Start with centered X and \mathbf{y}.
2. SVD of $X \Longrightarrow P C$ scores: $\mathbf{z}_{j}=X \mathbf{v}_{j}=d_{j} \mathbf{u}_{j}$.
3. Regress \mathbf{y} on $\left[\begin{array}{lll}\mathbf{z}_{1} & \ldots & \mathbf{z}_{m}\end{array}\right]$ where $m<p$.

$$
\widehat{\mathbf{y}}_{\mathrm{PCR}}(m)=\sum_{j=1}^{m} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\theta}_{j}=\frac{\mathbf{z}_{j}^{\prime} \mathbf{y}}{\mathbf{z}_{j}^{\prime} \mathbf{z}_{j}} \quad \text { (PCs orthogonal) }
$$

Standardizing X

Because PCR is not scale invariant, it is common to standardize X.
This amounts to PCA performed on a correlation matrix.

Comparing PCR, OLS and Ridge Predictions

Assumption
Centered data matrix $\underset{(n \times p)}{X}$ with rank p so OLS estimator is unique.
SVD

$$
\underset{(n \times p)}{X}=\underset{(n \times p)(p \times p)(p \times p)^{\prime}}{X^{\prime}}, \quad U^{\prime} U=V^{\prime} V=I_{p}, \quad V V^{\prime}=I_{p}
$$

Ridge Predictions

$$
\begin{aligned}
\widehat{\mathbf{y}}_{\text {Ridge }}(\lambda) & =X \widehat{\beta}_{\text {Ridge }}(\lambda)=X\left(X^{\prime} X+\lambda I_{p}\right)^{-1} X^{\prime} \mathbf{y} \\
& =\left[U D\left(D^{2}+\lambda I_{p}\right)^{-1} D U^{\prime}\right] \mathbf{y} \\
& =\sum_{j=1}^{p}\left(\frac{d_{j}^{2}}{d_{j}^{2}+\lambda}\right) \mathbf{u}_{j} \mathbf{u}_{j}^{\prime} \mathbf{y}
\end{aligned}
$$

Relating OLS and Ridge to PCR

Recall: U is Orthonormal

$$
\mathbf{u}_{j} \mathbf{u}_{j}^{\prime} \mathbf{y}=d_{j} \mathbf{u}_{j}\left(d_{j}^{2} \mathbf{u}_{j}^{\prime} \mathbf{u}_{j}\right)^{-1} d_{j} \mathbf{u}_{j}^{\prime} \mathbf{y}=\mathbf{z}_{j}\left(\mathbf{z}_{j}^{\prime} \mathbf{z}_{j}\right)^{-1} \mathbf{z}_{j}^{\prime} \mathbf{y}=\mathbf{z}_{j} \widehat{\theta}_{j}
$$

Substituting

$$
\begin{aligned}
\widehat{\mathbf{y}}_{\text {Ridge }}(\lambda) & =\sum_{j=1}^{m}\left(\frac{d_{j}^{2}}{d_{j}^{2}+\lambda}\right) \mathbf{u}_{j} \mathbf{u}_{j}^{\prime} \mathbf{y}=\sum_{j=1}^{m}\left(\frac{d_{j}^{2}}{d_{j}^{2}+\lambda}\right) \mathbf{z}_{j} \widehat{\theta}_{j} \\
\widehat{\mathbf{y}}_{\text {OLS }} & =\widehat{\mathbf{y}}_{\text {Ridge }}(0)=\sum_{j=1}^{p} \mathbf{z}_{j} \widehat{\theta}_{j}
\end{aligned}
$$

Comparing PCR, OLS, and Ridge Predictions

$$
\widehat{\mathbf{y}}_{\mathrm{PCR}}(m)=\sum_{j=1}^{m} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\mathbf{y}}_{\mathrm{OLS}}=\sum_{j=1}^{p} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\mathbf{y}}_{\text {Ridge }}(\lambda)=\sum_{j=1}^{m}\left(\frac{d_{j}^{2}}{d_{j}^{2}+\lambda}\right) \mathbf{z}_{j} \widehat{\theta}_{j}
$$

- \mathbf{z}_{j} is the j th sample PC
- d_{j}^{2} / n is the variance of the j th sample PC
- Ridge regresses y on sample PCs but shrinks predictions towards zero: higher variance PCs are shrunk less.
- PCR truncates the PCs with the smallest variance.
- OLS neither shrinks nor truncates: is uses all the PCs.

The Basic Idea

- $(T \times N)$ Matrix X of observations
- X_{t} contains a large number N of time series
- Comparable number T of time periods
- Can we "summarize" this information in some useful way?
- Forecasting and policy analysis applications

Survey Articles

Stock \& Watson (2010), Bai \& Ng (2008), Stock \& Watson (2006)

Example: Stock and Watson Dataset

Monthly Macroeconomic Indicators: $N>200, T>400$

Classical Factor Analysis Model

Assume that X_{t} has been de-meaned. . .

$$
\begin{gathered}
\underset{(N \times 1)}{X_{t}}=\stackrel{\wedge}{(r \times 1)} \underset{t}{F_{t}}+\epsilon_{t} \\
{\left[\begin{array}{l}
F_{t} \\
\epsilon_{t}
\end{array}\right] \stackrel{i i d}{\sim} \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
I_{r} & 0 \\
0 & \psi
\end{array}\right]\right)}
\end{gathered}
$$

$\Lambda=$ matrix of factor loadings
$\Psi=$ diagonal matrix of idiosyncratic variances.

Adding Time-Dependence

$$
\begin{aligned}
\underset{(N \times 1)}{X_{t}} & =\underset{(r \times 1)}{\wedge} F_{t}+\epsilon_{t} \\
\underset{(r \times 1)}{F_{t}} & =A_{1} F_{t-1}+\ldots+A_{p} F_{t-p}+u_{t} \\
{\left[\begin{array}{c}
u_{t} \\
\epsilon_{t}
\end{array}\right] } & \stackrel{i i d}{\sim} \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
I_{r} & 0 \\
0 & \psi
\end{array}\right]\right)
\end{aligned}
$$

Terminology

Static X_{t} depends only on F_{t}
Dynamic X_{t} depends on lags of F_{t} as well
Exact Ψ is diagonal and ϵ_{t} independent over time
Approximate Some cross-sectional \& temporal dependence in ϵ_{t}

The model I wrote down on the previous slide is sometimes called an "exact, static factor model" even though F_{t} has dynamics.

Some Caveats

1. Are "static" and "dynamic" really different?

- Can write dynamic model as a static one with more factors
- Static representation involves "different" factors, but we may not care: are the factors "real" or just a data summary?

2. Can we really allow for cross-sectional dependence?

- Unless the off-diagonal elements of Ψ are close to zero we can't tell them apart from the common factors
- "Approximate" factor models basically assume conditions under which the off-diagonal elements of Ψ are negligible
- Similarly, time series dependence in ϵ_{t} can't be very strong (stationary ARMA is ok)

Methods of Estimation for Dynamic Factor Models

1. Bayesian Estimation
2. Maximum Likelihood: EM-Algorithm + Kalman Filter

- Watson \& Engle (1983); Ghahramani \& Hinton (1996); Jungbacker \& Koopman (2008); Doz, Giannone \& Reichlin (2012)

3. "Nonparametric" Estimation via PCA

- PCA on the $(T \times N)$ matrix X, ignoring time dependence.
- The $(r \times 1)$ vector \hat{F}_{t} of PC scores associated with the first r PCs are our estimate of F_{t}
- Essentially treats F_{t} as an r-dimensional parameter to be estimated from an N -dimensional observation X_{t}

Estimation by PCA

PCA Normalization

- $F^{\prime} F / T=I_{r}$ where $F=\left(F_{1}, \ldots, F_{T}\right)^{\prime}$
- $\Lambda^{\prime} \Lambda=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{r}\right)$ where $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r}$

Assumption I

Factors are pervasive: $\Lambda^{\prime} \Lambda / N \rightarrow D_{\Lambda}$ an $(r \times r)$ full rank matrix.

Assumption II

max e-value $E\left[\epsilon_{t} \epsilon_{t}^{\prime}\right] \leq c \leq \infty$ for all N.
Upshot of the Assumptions
Average over the cross-section \Longrightarrow contribution from the factors persists while contribution from the idiosyncratic terms disappears as $N \rightarrow \infty$.

Key Result for PCA Estimation

Under the assumptions on the previous slide and some other technical conditions, the first r PCs of X consistently estimate the space spanned by the factors as $N, T \rightarrow \infty$.

Choosing the Number of Factors - Scree Plot

If we use PC estimation, we can look a something called a "scree plot" to help us decide how many PCs to include:

This figure depicts the eigenvalues for an $N=1148, T=252$ dataset of excess stock returns

Choosing the Number of Factors - Bai \& Ng (2002)

Choose r to minimize an information criterion:

$$
I C(r)=\log V_{r}(\widehat{\Lambda}, \widehat{F})+r \cdot g(N, T)
$$

where

$$
V_{r}(\Lambda, F)=\frac{1}{N T} \sum_{t=1}^{T}\left(X_{t}-\Lambda F_{t}\right)^{\prime}\left(X_{t}-\Lambda F_{t}\right)
$$

and g is a penalty function. The paper provides conditions on the penalty function that guarantee consistent estimation of the "true number" of factors.

Some Special Problems in High-dimensional Forecasting

Estimation Uncertainty

We've already seen that OLS can perform very badly if the number of regressors is large relative to sample size.

Best Subsets Infeasible

With more than 30 or so regressors, we can't check all subsets of predictors making classical model selection problematic.

Noise Accumulation

Large N is supposed to help in factor models: averaging over the cross-section gives a consistent estimator of factor space. This can fail in practice, however, since it relies on the assumption that the factors are pervasive. See Boivin \& Ng (2006).

Diffusion Index Forecasting - Stock \& Watson (2002a,b)

JASA paper has the theory, JBES paper has macro forecasting example.

Basic Setup

Forecast scalar time series y_{t+1} using N-dimensional collection of time series X_{t} where we observe periods $t=1, \ldots, T$.

Assumption
Static representation of Dynamic Factor Model:

$$
\begin{aligned}
y_{t} & =\beta^{\prime} F_{t}+\gamma(L) y_{t}+\epsilon_{t+1} \\
x_{t} & =\Lambda F_{t}+e_{t}
\end{aligned}
$$

"Direct" Multistep Ahead Forecasts
"Iterated" forecast would be linear in F_{t}, y_{t} and lags:

$$
y_{t+h}^{h}=\alpha_{h}+\beta_{h}(L) F_{t}+\gamma_{h}(L) y_{t}+\epsilon_{t+h}^{h}
$$

This is really just PCR

Diffusion Index Forecasting - Stock \& Watson (2002a,b)

Estimation Procedure

1. Data Pre-processing
1.1 Transform all series to stationarity (logs or first difference)
1.2 Center and standardize all series
1.3 Remove outliers (ten times IQR from median)
1.4 Optionally augment X_{t} with lags
2. Estimate the Factors

- No missing observations: PCA on X_{t} to estimate \widehat{F}_{t}
- Missing observations/Mixed-frequency: EM-algorithm

3. Fit the Forecasting Regression

- Regress y_{t} on a constant and lags of \widehat{F}_{t} and y_{t} to estimate the parameters of the "Direct" multistep forecasting regression.

Diffusion Index Forecasting - Stock \& Watson (2002b)

Recall from above that, under certain assumptions, PCA consistently estimates the space spanned by the factors. Broadly similar assumptions are at work here.

Main Theoretical Result
Moment restrictions on (ϵ, e, F) plus a "rank condition" on Λ imply that the MSE of the procedure on the previous slide converges to that of the infeasible optimal procedure, provided that $N, T \rightarrow \infty$.

Diffusion Index Forecasting - Stock \& Watson (2002a)

Forecasting Experiment

- Simulated real-time forecasting of eight monthly macro variables from 1959:1 to 1998:12
- Forecasting Horizons: 6, 12, and 24 months
- "Training Period" 1959:1 through 1970:1
- Predict h-steps ahead out-of-sample, roll and re-estimate.
- BIC to select lags and \# of Factors in forecasting regression
- Compare Diffusion Index Forecasts to Benchmark
- AR only
- Factors only
- AR + Factors

Diffusion Index Forecasting - Stock \& Watson (2002a)

Empirical Results

- Factors provide a substantial improvement over benchmark forecasts in terms of MSPE
- Six factors explain 39% of the variance in the 215 series; twelve explain 53\%
- Using all 215 series tends to work better than restricting to balanced panel of 149 (PCA estimation)
- Augmenting X_{t} with lags isn't helpful

Lecture \#10 - Selective Inference

Optimal Inference After Model Selection (Fithian et al., 2017)

How Statistics is Done In Reality

Step 1: Selection - Decide what questions to ask.
"The analyst chooses a statistical model for the data at hand, and formulates testing, estimation, or other problems in terms of unknown aspects of that model."

Step 2: Inference - Answer the Questions.

"The analyst investigates the chosen problems using the data and the selected model."

Problem - "Data-snooping"
Standard techniques for (frequentist) statistical inference assume that we choose our questions before observing the data.

Simple Example: "File Drawer Problem"

$Y_{i} \sim \operatorname{iid} \mathrm{~N}\left(\mu_{i}, 1\right)$ for $i=1, \ldots, n$

- I want to know which $\mu_{i} \neq 0$, but I'm busy and n is big.
- My RA looks at each Y_{i} and finds the "interesting" ones, namely $\widehat{\mathcal{I}}=\left\{i:\left|Y_{i}\right|>1\right\}$.
- I test $H_{0, i}: \mu_{i}=0$ against the two-sided alternative at the 5% significance level for each $i \in \widehat{\mathcal{I}}$.

Two Questions

1. What is the probability of falsely rejecting $H_{0, i}$?
2. Among all $H_{0, i}$ that I test, what fraction are false rejections?

Simple Example: "File Drawer Problem"

$$
\begin{aligned}
\mathbb{P}_{H_{0, i}}\left(\left\{\text { Reject } H_{0, i}\right\}\right) & =\mathbb{P}_{H_{0, i}}\left(\left\{\text { Test } H_{0, i}\right\} \cap\left\{\text { Reject } H_{0, i}\right\}\right) \\
& =\mathbb{P}_{H_{0, i}}\left(\left\{\text { Reject } H_{0, i}\right\} \mid\left\{\text { Test } H_{0, i}\right\}\right) \mathbb{P}_{H_{0, i}}\left(\left\{\text { Test } H_{0, i}\right\}\right) \\
& =\mathbb{P}_{H_{0, i}}\left(\left\{\left|Y_{i}\right|>1.96\right\} \mid\left\{\left|Y_{i}\right|>1\right\}\right) \mathbb{P}_{H_{0, i}}\left(\left\{\left|Y_{i}\right|>1\right\}\right) \\
& =\frac{2 \Phi(-1.96)}{2 \Phi(-1)} \times 2 \Phi(-1) \\
& \approx 0.16 \times 0.32 \approx 0.05
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}_{H_{0, i}}\left(\left\{\text { Reject } H_{0, i}\right\} \mid\left\{\text { Test } H_{0, i}\right\}\right) & =\mathbb{P}_{H_{0, i}}\left(\left\{\left|Y_{i}\right|>1.96\right\} \mid\left\{\left|Y_{i}\right|>1\right\}\right) \\
& =\frac{\Phi(-1.96)}{\Phi(-1)} \approx 0.16
\end{aligned}
$$

Simple Example: "File Drawer Problem"

Conditional vs. Unconditional Type I Error Rates

- The conditional probability of falsely rejecting $H_{0, i}$, given that I have tested it, is about 0.16.
- The unconditional probability of falsely rejecting $H_{0, i}$ is 0.05 since I only test a false null with probability 0.32 .

Idea for Post-Selection Inference
Control the Type I Error Rate conditional on selection: "The answer must be valid, given that the question was asked."

Simple Example: "File Drawer Problem"

Conditional Type I Error Rate
Solve $\mathbb{P}_{H_{0, i}}\left(\left\{\left|Y_{i}\right|>c\right\} \mid\left\{\left|Y_{i}\right|>1\right\}\right)=0.05$ for c.

$$
\begin{aligned}
\mathbb{P}_{H_{0, i}}\left(\left\{\left|Y_{i}\right|>c\right\} \mid\left\{\left|Y_{i}\right|>1\right\}\right) & =\frac{\Phi(-c)}{\Phi(-1)}=0.05 \\
c & =-\Phi^{-1}(\Phi(-1) \times 0.05) \\
c & \approx 2.41
\end{aligned}
$$

Notice:
To account for the first-stage selection step, we need a larger critical value: 2.41 vs. 1.96 . This means the test is less powerful.

Selective Inference vs. Sample-Splitting

Classical Inference

Control the Type I error under model $M: \mathbb{P}_{M, H_{0}}\left(\right.$ reject $\left.H_{0}\right) \leq \alpha$.
Selective Inference
Control the Type I error under model M, given that M and H_{0} were selected: $\mathbb{P}_{M, H_{0}}\left(\right.$ reject $H_{0} \mid\left\{M, H_{0}\right.$ selected $\left.\}\right) \leq \alpha$.

Sample-Splitting
Use different datasets to choose (M, H_{0}) and carry out inference:
$\mathbb{P}_{M, H_{0}}\left(\right.$ reject $H_{0} \mid\left\{M, H_{0}\right.$ selected $\left.\}\right)=\mathbb{P}_{M, H_{0}}\left(\right.$ reject $\left.H_{0}\right)$.

Selective Inference in Exponential Family Models

Questions

1. Recipe for selective inference in realistic examples?
2. How to construct the "best" selective test in a given example?
3. How does selective inference compare to sample-splitting?

Fithian, Sun \& Taylor (2017)

- Use classical theory for exponential family models (Lehmann \& Scheffé).
- Computational procedure for UMPU selective test/CI after arbitrary model/hypothesis selection.
- Sample-splitting is typically inadmissible (wastes information).
- Example: post-selection inference for high-dimensional regression

A Prototype Example of Selective Inference

This is my own example, but uses the same idea that underlies Fithian et al.

- Choose between two models on a parameter δ.
- If $\delta \neq 0$, choose M 1 ; if $\delta=0$, choose M 2
- E.g. δ is the endogeneity of $X, \mathrm{M} 1$ is IV and M2 is OLS
- Observe $Y_{\delta} \sim N\left(\delta, \sigma_{\delta}^{2}\right)$ and use this to choose a model.
- Selection Event: $A \equiv\left\{\left|Y_{\delta}\right|>c\right\}$, for some critical value c
- If A, then choose M1. Otherwise, choose M2.
- After choosing a model, carry out inference for β.
- Under a particular model $M, Y_{\beta} \sim N\left(\beta, \sigma_{\beta}^{2}\right)$
- β is a model-specific parameter: could be meaningless or not even exist under a different model.
- If Y_{β} and Y_{δ} are correlated (under model M), we need to account for conditioning on A when carrying out inference for β.

All Calculations are Under a Given Model M

Key Idea

Under whichever model M ends up being selected, there is a joint normal distribution for Y_{β} and Y_{δ} without conditioning on A.

WLOG unit variances, ρ known

$$
\left[\begin{array}{l}
Y_{\beta} \\
Y_{\delta}
\end{array}\right] \sim \mathrm{N}\left(\left[\begin{array}{l}
\beta \\
\delta
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)
$$

As long as we can consistently estimate the variances of Y_{β} and Y_{δ} along with their covariance, this is not a problem.

Selective Inference in a Bivariate Normal Example

$$
\left[\begin{array}{l}
Y_{\beta} \\
Y_{\delta}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\beta \\
\delta
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right), \quad A \equiv\left\{\left|Y_{\delta}\right|>c\right\}
$$

Two Cases

1. Condition on A occurring
2. Condition on A not occurring

Problem

If δ were known, we could directly calculate how conditioning on A affects the distribution of Y_{β}, but δ is unknown!

Solution

Condition on a sufficient statistic for δ.

Conditioning on a Sufficient Statistic

Theorem

If U is a sufficient statistic for δ, then the joint distribution of $\left(Y_{\beta}, Y_{\delta}\right)$ given U does not depend on δ.

In Our Example
Residual $U=Y_{\delta}-\rho Y_{\beta}$ from a projection of Y_{δ} onto Y_{β} is sufficient for δ.
Straightforward Calculation

$$
\left[\begin{array}{l}
Y_{\beta} \\
Y_{\delta}
\end{array}\right] \left\lvert\,(U=u)=\left[\begin{array}{c}
\beta+Z \\
u+\rho(\beta+Z)
\end{array}\right]\right., \quad Z \sim \mathrm{~N}(0,1)
$$

Notice that this is a singular normal distribution

The Distribution of $Y_{\beta} \mid(A, U=u)$

$$
\left[\begin{array}{l}
Y_{\beta} \\
Y_{\delta}
\end{array}\right] \left\lvert\,(U=u)=\left[\begin{array}{c}
\beta+Z \\
u+\rho(\beta+Z)
\end{array}\right]\right., \quad Z \sim \mathrm{~N}(0,1)
$$

Start with case in which A occurs so we select $M 1$. Under $H_{0}: \beta=\beta_{0}$,

$$
\begin{aligned}
\mathbb{P}_{\beta_{0}}\left(Y_{\beta} \leq y \mid A, U=u\right) & =\frac{\mathbb{P}_{\beta_{0}}\left(\left\{Y_{\beta} \leq y\right\} \cap A \mid U=u\right)}{\mathbb{P}_{\beta_{0}}(A \mid U=u)} \\
& =\frac{\mathbb{P}\left(\left\{Z \leq y-\beta_{0}\right\} \cap\left\{\left|u+\rho\left(\beta_{0}+Z\right)\right|>c\right\}\right)}{\mathbb{P}\left(\left|u+\rho\left(\beta_{0}+Z\right)\right|>c\right)}
\end{aligned}
$$

$\mathbb{P}(A \mid U=u)$ under $H_{0}: \beta=\beta_{0}$

$$
\begin{aligned}
P_{D}(A) & \equiv P_{\beta_{0}}(A \mid U=u) \\
& =\mathbb{P}\left(\left|u+\rho\left(\beta_{0}+Z\right)\right|>c\right) \\
& =\mathbb{P}\left[u+\rho\left(\beta_{0}+Z\right)>c\right]+\mathbb{P}\left[u+\rho\left(\beta_{0}+Z\right)<-c\right] \\
& =\mathbb{P}\left[\rho\left(\beta_{0}+Z\right)>c-u\right]+\mathbb{P}\left[u+\rho\left(\beta_{0}+Z\right)<-c-u\right] \\
& =1-\Phi\left(\frac{c-u}{\rho}-\beta_{0}\right)+\Phi\left(\frac{-c-u}{\rho}-\beta_{0}\right)
\end{aligned}
$$

$\mathbb{P}\left(\left\{Y_{\beta} \leq y\right\} \cap A \mid U=u\right)$ under $H_{0}: \beta=\beta_{0}$

$$
\begin{aligned}
P_{N}(A) & \equiv \mathbb{P}\left(\left\{Y_{\beta} \leq y\right\} \cap A \mid U=u\right) \\
& =\mathbb{P}\left(\left\{Z \leq y-\beta_{0}\right\} \cap\left\{\left|u+\rho\left(\beta_{0}+Z\right)\right|>c\right\}\right) \\
& =\left\{\begin{array}{l}
\Phi\left(y-\beta_{0}\right), \quad y<(-c-u) / \rho \\
\Phi\left(\frac{-c-u}{\rho}-\beta_{0}\right), \quad(-c-u) / \rho \leq y \leq(c-u) / \rho \\
\Phi\left(y-\beta_{0}\right)-\Phi\left(\frac{c-u}{\rho}-\beta_{0}\right)+\Phi\left(\frac{-c-u}{\rho}-\beta_{0}\right), \quad y>(c-u) / \rho
\end{array}\right.
\end{aligned}
$$

$F_{\beta_{0}}(y \mid A, U=u)$

Define $\ell(u)=(-c-u) / \rho, r(u)=(c-u) / \rho$. We have:

$$
F_{\beta_{0}}(y \mid A, U=u)=P_{N}(A) / P_{D}(A)
$$

where

$$
\begin{aligned}
& P_{D}(A) \equiv 1-\Phi\left(r(u)-\beta_{0}\right)+\Phi\left(\ell(u)-\beta_{0}\right) \\
& P_{N}(A) \equiv\left\{\begin{array}{lr}
\Phi\left(y-\beta_{0}\right), & y<\ell(u) \\
\Phi\left(\ell(u)-\beta_{0}\right), & \ell(u) \leq y \leq r(u) \\
\Phi\left(y-\beta_{0}\right)-\Phi\left(r(u)-\beta_{0}\right)+\Phi\left(\ell(u)-\beta_{0}\right), & y>r(u)
\end{array}\right.
\end{aligned}
$$

Note that $F_{\beta_{0}}(y \mid A, U=u)$ has a flat region where $\ell(u) \leq y \leq r(u)$

$Q_{\beta_{0}}(p \mid A, U=u)$

Inverting the CDF from the preceding slide:

$$
Q_{\beta_{0}}(p \mid A, U=u)= \begin{cases}\beta_{0}+\Phi^{-1}\left(p \times P_{D}(A)\right), & p<p^{*} \\ \beta_{0}+\Phi^{-1}\left[p \times P_{D}(A)+\Phi\left(r(u)-\beta_{0}\right)-\Phi\left(\ell(u)-\beta_{0}\right)\right], & p \geq p^{*}\end{cases}
$$

where

$$
\begin{aligned}
p^{*} & \equiv \Phi\left(\ell(u)-\beta_{0}\right) / P_{D}(A) \\
P_{D}(A) & \equiv 1-\Phi\left(r(u)-\beta_{0}\right)+\Phi\left(\ell(u)-\beta_{0}\right) \\
\ell(u) & \equiv(-c-u) / \rho \\
r(u) & \equiv(c-u) / \rho
\end{aligned}
$$

The Distribution of $Y_{\beta} \mid\left(A^{c}, U=u\right)$

$$
\left[\begin{array}{l}
Y_{\beta} \\
Y_{\delta}
\end{array}\right] \left\lvert\,(U=u)=\left[\begin{array}{c}
\beta+Z \\
u+\rho(\beta+Z)
\end{array}\right]\right., \quad Z \sim N(0,1)
$$

If A does not occur, when we select $M 2$. Under $H_{0}: \beta=\beta_{0}$,

$$
\begin{aligned}
\mathbb{P}_{\beta_{0}}\left(Y_{\beta} \leq y \mid A^{c}, U=u\right) & =\frac{\mathbb{P}_{\beta_{0}}\left(\left\{Y_{\beta} \leq y\right\} \cap A^{c} \mid U=u\right)}{\mathbb{P}_{\beta_{0}}\left(A^{c} \mid U=u\right)} \\
& =\frac{\mathbb{P}\left(\left\{Z \leq y-\beta_{0}\right\} \cap\left\{\left|u+\rho\left(\beta_{0}+Z\right)\right|<c\right\}\right)}{\mathbb{P}\left(\left|u+\rho\left(\beta_{0}+Z\right)\right|<c\right)}
\end{aligned}
$$

$F_{\beta_{0}}\left(y \mid A^{c}, U=u\right)$

As above, define $\ell(u)=(-c-u) / \rho, r(u)=(c-u) / \rho$. We have:

$$
F_{\beta_{0}}\left(y \mid A^{c}, U=u\right)=P_{N}\left(A^{c}\right) / P_{D}\left(A^{c}\right)
$$

where

$$
\begin{aligned}
& P_{D}\left(A^{c}\right) \equiv \Phi\left(r(u)-\beta_{0}\right)-\Phi\left(\ell(u)-\beta_{0}\right) \\
& P_{N}\left(A^{c}\right) \equiv\left\{\begin{array}{rr}
0, & y<\ell(u) \\
\Phi\left(y-\beta_{0}\right)-\Phi\left(\ell(u)-\beta_{0}\right), & \ell(u) \leq y \leq r(u) \\
\Phi\left(r(u)-\beta_{0}\right)-\Phi\left(\ell(u)-\beta_{0}\right), & y>r(u)
\end{array}\right.
\end{aligned}
$$

Notice that this is a CDF with a bounded support set: $y \in[\ell(u), r(u)]$

$Q_{\beta_{0}}\left(p \mid A^{c}, U=u\right)$

Inverting the CDF from the preceding slide:

$$
Q_{\beta_{0}}\left(p \mid A^{c}, U=u\right)=\beta_{0}+\Phi^{-1}\left[p \times P_{D}\left(A^{c}\right)+\Phi\left(\ell(u)-\beta_{0}\right)\right]
$$

where:

$$
\begin{aligned}
P_{D}\left(A^{c}\right) & \equiv \Phi\left(r(u)-\beta_{0}\right)-\Phi\left(\ell(u)-\beta_{0}\right) \\
\ell(u) & \equiv(-c-u) / \rho \\
r(u) & \equiv(c-u) / \rho
\end{aligned}
$$

Equal-tailed Selective Test

Conditional on A

1. Compute observed value u of $U=Y_{\delta}-\rho Y_{\beta}$ (given A).
2. Compute $q_{\alpha / 2} \equiv Q_{\beta_{0}}(\alpha / 2 \mid A, U=u)$
3. $q_{1-\alpha / 2} \equiv Q_{\beta_{0}}(1-\alpha / 2 \mid A, U=u)$
4. Reject $H_{0}: \beta=\beta_{0}$ if Y_{β} lies outside outside $\left[q_{\alpha / 2}, q_{1-\alpha / 2}\right]$.

Conditional on A^{c}
Same as above, but replace A with A^{c} in the preceding expressions.

Constructing a Confidence Interval

Simply invert the test: find the values of β_{0} that are not rejected.
Valid conditional on $(U=u) \Longrightarrow$ valid unconditionally!

