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give any and all parameters of its distribution for full credit.



Econ 103 Midterm Examination II, Page 2 of 9 November 11th, 2013

1. Suppose that X is a random variable with support {1, 2} and Y is a random variable

with support {0, 1} where X and Y have the following joint pmf:

pXY (1, 0) = 0.4 pXY (1, 1) = 0.3

pXY (2, 0) = 0.3 pXY (2, 1) = 0

(a) (2 points) Express the joint probability mass function (pmf) in a 2× 2 table.

Solution:

Y

0 1

X
1 0.4 0.3

2 0.3 0

(b) (3 points) Using the table, calculate the marginal pmfs of X and Y .

Solution:

pX(1) = pXY (1, 0) + pXY (1, 1) = 0.7

pX(2) = pXY (2, 0) + pXY (2, 1) = 0.3

pY (0) = pXY (1, 0) + pXY (2, 0) = 0.7

pY (1) = pXY (1, 1) + pXY (2, 1) = 0.3

(c) (5 points) Calculate the conditional pmfs of Y |X = 1 and Y |X = 2.

Solution: The distribution of Y |X = 1 is

P (Y = 0|X = 1) =
pXY (1, 0)

pX(1)
= 4/7

P (Y = 1|X = 1) =
pXY (1, 1)

pX(1)
= 3/7

while the distribution of Y |X = 2 is

P (Y = 0|X = 2) =
pXY (2, 0)

pX(2)
= 1

P (Y = 1|X = 2) =
pXY (2, 1)

pX(2)
= 0
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(d) (3 points) Calculate E[Y |X = 1] and E[Y |X = 2].

Solution:

E[Y |X = 1] = 0× 4/7 + 1× 3/7 = 3/7

E[Y |X = 2] = 0

(e) (4 points) Calculate the covariance between X and Y .

Solution: First, from the marginal distributions we calculate E[Y ] = 3/10 and

E[X] = 1× 7/10 + 2× 3/10 = 13/10. Hence E[X]E[Y ] = 0.39. Second,

E[XY ] = (0× 1)× 0.4 + (0× 2)× 0.3 + (1× 1)× 0.3 + (1× 2)× 0

= 0.3

Finally Cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0.3− 0.39 = −0.09

(f) (3 points) Are X and Y independent? Explain briefly.

Solution: No: non-zero covariance implies dependence. Another way to see

this is simply to notice that X clearly gives us information about Y because

X = 2 rules out Y = 1.

2. The random variables X1 and X2 correspond to the annual returns of Stock 1 and

Stock 2. Suppose that E[X1] = 0.1, E[X2] = 0.3, V ar(X1) = V ar(X2) = 1, and

ρ = Corr(X1, X2). A portfolio Π(ω) is defined by the proportion ω of Stock 1 that it

contains. That is, Π(ω) = ωX1 + (1− ω)X2 where 0 ≤ ω ≤ 1.

(a) (3 points) What value of ω gives a portfolio with expected return 0.2?

Solution:

E[Π(ω)] = ωE[X1] + (1− ω)E[X2] = 0.2

0.1ω + 0.3(1− ω) = 0.2

ω = 0.5

(b) (6 points) Suppose that ω = 1/4. In terms of ρ, what is the portfolio variance?
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Solution: First we have

V ar [Π(ω)] = ω2V ar(X1) + (1− ω)2V ar(X2) + 2ω(1− ω)Cov(X1, X2)

= ω2 + (1− ω)2 + 2ω(1− ω)ρ

since V ar(X1) = V ar(X2) = 1 and ρ = Corr(X1, X2). Substituting ω = 1/4,

V ar [Π(1/4)] = 1/16 + 9/16 + 2(1/4)(3/4)ρ = 10/16 + 6ρ/16

= (3ρ+ 5)/8

(c) (3 points) Again, suppose that ω = 1/4. What are the maximum and minimum

values of the portfolio variance? What are the corresponding values of ρ?

Solution: From the previous part, V ar[Π(ω)] = (3ρ+ 5)/8. By inspection this

variance takes on a maximum value of 1 when ρ = 1. It takes on a minimum

value of 0.25 when ρ = −1.

(d) (3 points) If we assume that variance is a reasonable measure of risk, what does

your answer to part (c) suggest about the benefits of constructing a portfolio rather

than holding only one stock? Explain briefly.

Solution: We see that the variance of this portfolio cannot exceed the variance

of the individual assets that make it up. Unless ρ = 1, the portfolio is less risky

than either of the individual stocks.

3. Let Y be a continuous random variable with support [0, 1] and pdf f(y) = Cy3(1− y).

(a) (5 points) Calculate the value of the constant C in the pdf of Y .

Solution: Since pdfs must integrate to one over their support,

1 =

∫ ∞
−∞

f(y) dy = C

∫ 1

0

(y3 − y4) dy = C

(
y4

4
− y5

5

)∣∣∣∣1
0

= C

(
1

4
− 1

5

)
= C

(
5− 4

20

)
=
C

20

Hence, C = 20.

(b) (5 points) Calculate the CDF F (y0) of Y .
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Solution: Using our calculations from the previous part, we need only change

the upper limit of integration and substitute 20 for C to show that

F (y0) =

∫ y0

−∞
f(y) dy = 20

(
y4

4
− y5

5

)∣∣∣∣y0
0

= 5y40 − 4y50

for y0 ∈ [0, 1]. Thus, the full expression for the CDF of Y is

F (y0) =


0, y0 < 0

5y40 − 4y50, 0 ≤ y0 < 1

1, y0 ≥ 1

(c) (5 points) Calculate the expected value of Y .

Solution:

E[Y ] = 20

∫ 1

0

y(y3 − y4) dx = 20

∫ 1

0

(y4 − y5) dx = 20

(
y5

5
− y6

6

)∣∣∣∣1
0

= 20

(
1

5
− 1

6

)
= 20

(
6− 5

30

)
=

2

3

(d) (5 points) Calculate the variance of Y using the shortcut formula.

Solution: By the shortcut formula, we only need to calculate E[Y 2] since we

know E[Y ]2 = 4/9 from the preceding part. We have,

E[X2] = 20

∫ 1

0

(y5 − y6) dy = 20

(
y6

6
− y7

7

)∣∣∣∣1
0

= 20

(
1

6
− 1

7

)
= 10/21

Hence V ar(Y ) = 10/21− 4/9 = (30− 28)/63 = 2/63.

4. Let X1, X2, . . . , Xk ∼ iid N(µX , σ
2) independent of Y1, Y2, . . . , Ym ∼ iid N(µY , σ

2) and

define X̄k = (
∑k

i=1Xi)/k, Ȳm = (
∑m

i=1 Yi)/m, µ̂ = (X̄k + Ȳm)/2.

(a) (2 points) What is the sampling distribution of X̄k?

Solution: N(µX , σ
2/k)

(b) (2 points) What is the sampling distribution of Ȳm?
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Solution: N(µY , σ
2/m)

(c) (5 points) Suppose you wanted to estimate µ = (µX + µY )/2. This is the midpoint

of the two means µX and µY . Show that µ̂ is an unbiased estimator of µ.

Solution: E[µ̂] = E[(X̄k + Ȳm)/2] = E[X̄k]/2 + E[Ȳm]/2 = µX/2 + µY /2 = µ

(d) (6 points) What is the sampling distribution of µ̂?

Solution: Since µ̂ is a linear combination of independent normals, its sampling

distribution is normal. We already showed in the previous part that its mean is

µ. We calculate its variance as follows:

V ar(µ̂) = V ar
[
(X̄k + Ȳm)/2

]
=

1

4

[
V ar(X̄k) + V ar(Ȳm)

]
=

1

4

(
σ2/k + σ2/m

)
= σ2

(
m+ k

4mk

)

5. Sara is carrying out a poll to estimate the proportion of Penn Undergraduates who favor

legalizing marijuana. Let p ∈ [0, 1] denote the true, unknown proportion. Sara polls a

random sample of n Penn students and counts the total number T who favor legalizing

marijuana. To estimate p, she uses p̂ = (T + 2)/(n+ 4).

(a) (3 points) Under random sampling T is a random variable. What kind?

Solution: Binomial(n, p)

(b) (3 points) Write down E[T ].

Solution: The mean of a Binomial RV is np.

(c) (3 points) Write down V ar(T ).

Solution: The variance of a Binomial RV is np(1− p).

(d) (6 points) Calculate the bias of p̂ and briefly explain the intuition for your result.
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Solution: By the Linearity of Expectation and the definition of bias,

E[p̂] =
E[T ] + 2

n+ 4
=
np+ 2

n+ 4

Bias(p̂) = E[p̂]− p =
np+ 2

n+ 4
− p

=
np+ 2− p(n+ 4)

n+ 4
=

2− 4p

n+ 4

When p = 1/2, the estimator is unbiased. When p > 1/2 the bias is negative.

When p < 1/2 the bias is positive. Intuitively, the estimator pulls the sample

proportion towards 1/2.

(e) (5 points) Calculate V ar(p̂).

Solution:

V ar(p̂) = V ar

(
T + 2

n+ 4

)
=
V ar(T )

(n+ 4)2
=
np(1− p)
(n+ 4)2

(f) (5 points) Is p̂ a consistent estimator of p? Explain your answer.

Solution: Yes: taking limits as n→∞ both the bias and the variance of p̂ go

to zero. Hence the mean-squared error converges to zero.

(g) (5 points) Kevin thinks that p̂ is a bad estimator. He tells Sara that she should use

p̃ = T/n instead. Briefly argue in favor of Kevin’s proposal using what you know

about the sampling distributions of p̃ and p̂.

Solution: The estimator p̃ = T/n is just the sample mean. Regardless of the

true value of p, this is always an unbiased estimator of p. In contrast, Sara’s

estimator is biased unless p = 1/2. Kevin could argue that Sara should prefer

his estimator because it is “correct on average” in repeated sampling.

6. This question asks you write R code to make random draws from two distributions

related to the normal. You may use any commands you like except rchisq and rt.

(a) (10 points) Write a function called my.rchisq that uses rnorm to make a single

random draw from a χ2(ν) distribution, where ν is the degrees of freedom. Your

function should take a single argument, the degrees of freedom df, and return the

random draw.

Name: Student ID #:



Econ 103 Midterm Examination II, Page 8 of 9 November 11th, 2013

Solution:

my.rchisq <- function(df){

normal.sims <- rnorm(df)

chisq.sim <- sum(normal.sims^2)

return(chisq.sim)

}

(b) (10 points) Write a function called my.rt that uses rnorm and my.rchisq to make

a single random draw from a t(ν) distribution, where ν is the degrees of freedom.

Your function should take a single argument, the degrees of freedom df, and return

the random draw.

Solution:

my.rt <- function(df){

chisq.sim <- my.rchisq(df)

normal.sim <- rnorm(1)

t.sim <- normal.sim / sqrt(chisq.sim / df)

return(t.sim)

}

7. Let X1, X2, . . . , Xn ∼ iid N(µX , σ
2
X) independent of Y1, Y2, . . . , Ym ∼ iid N(µY , σ

2
Y ) and

define S2
X to be the sample variance of the X-observations and S2

Y to be the sample

variance of the Y -observations.

(a) (3 points) What is the sampling distribution of (n − 1)S2
X/σ

2
X? You do not need

to explain your answer.

Solution: χ2(n− 1)

(b) (5 points) Using your answer to the previous part, derive a 100×(1−α)% confidence

interval for σ2
X . Express the interval in terms of the appropriate R commands.

Solution: Define:

a = qchisq(α/2, df = n - 1)

b = qchisq(1− α/2, df = n - 1)

Name: Student ID #:
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Then, by (c)

P

(
a ≤ (n− 1)S2

σ2
≤ b

)
= 1− α

P

(
a

(n− 1)S2
≤ 1

σ2
≤ b

(n− 1)S2

)
= 1− α

P

(
(n− 1)S2

b
≤ σ2 ≤ (n− 1)S2

a

)
= 1− α

(c) (6 points) What is the sampling distribution of (S2
X/σ

2
X)/(S2

Y /σ
2
Y )? Explain.

Solution: From above, (n− 1)S2
X/σ

2
X ∼ χ2(n− 1). By the same reasoning, we

have (m−1)S2
Y /σ

2
Y ∼ χ2(m−1). These two χ2 random variables are independent

since they arose from two independent samples. The quantity (S2
X/σ

2
X)/(S2

Y /σ
2
Y )

is simply the ratio of these two χ2 random variables after dividing each by its

degrees of freedom, hence it follows an F (n− 1,m− 1) distribution.

(d) (6 points) Use your answer to the previous part to propose a procedure for con-

structing a (1− α)× 100% confidence interval for the ratio of population variances

σ2
Y /σ

2
X . Express the interval in terms of the appropriate R commands and briefly

suggest how we might use it in practice.

Solution: Define:

a = qf(α/2, n-1, m-1)

b = qf(1− α/2, n-1, m-1)

Then by the previous part,

P

[
a ≤ (S2

X/σ
2
X)

(S2
Y /σ

2
Y )
≤ b

]
= 1− α

P

[
a ≤

(
S2
X

S2
Y

)(
σ2
Y

σ2
X

)
≤ b

]
= 1− α

P

[
aS2

Y

S2
X

≤ σ2
Y

σ2
X

≤ bS2
Y

S2
X

]
= 1− α

We could use such a confidence interval learn whether one population has a

higher variance than another. For example, we might want to know whether

one portfolio of stocks has a higher variance than another based on sample data.
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