First Midterm Examination
 Econ 103, Statistics for Economists

February 13Th, 2018
You will have 70 minutes to complete
this exam. Graphing calculators, notes,
and textbooks are not permitted.

I pledge that, in taking and preparing for this exam, I have abided by the University of Pennsylvania's Code of Academic Integrity. I am aware that any violations of the code will result in a failing grade for this course.

Name: \qquad

Signature: \qquad

Student ID \#: \qquad Recitation \#:

Question:	1	2	3	4	5	Total
Points:	40	30	25	15	30	140
Score:						

Instructions: Answer all questions in the space provided, continuing on the back of the page if you run out of space. Show your work for full credit but be aware that writing down irrelevant information will not gain you points. Be sure to sign the academic integrity statement above and to write your name and student ID number on each page in the space provided. Make sure that you have all pages of the exam before starting.

Warning: If you continue writing after we call time, even if this is only to fill in your name, twenty-five points will be deducted from your final score. In addition, a point will be deducted for each page on which you do not write your name and student ID.

1. Write down the answer to each of the following. No explanation is needed.
(a) What is the formula for the sample variance of x_{1}, \ldots, x_{n} ?
(b) What is the formula for the sample covariance between x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} ?
(c) Using the rule of thumb for skewness, how would we expect the mean and median of a right-skewed dataset to compare to one another?
(d) If x is measured in meters, what are the units of s_{x}^{2} ?
(e) TRUE or FALSE: $s_{x y} \geq r_{x y}$.
(f) Let A and B be two events. Write down the expression for $P(A \cup B)$.
(g) Let A and B be two events. What is the definition of $P(B \mid A)$?
(h) Let A and B be two events. Write down Bayes' rule for calculating $P(B \mid A)$.
(i) TRUE or FALSE: if events A and B are mutually exclusive they are independent.
(j) TRUE or FALSE: $P(A \cap B) \leq P(A \cup B)$.
\qquad
\qquad

The following question is based on a problem from your assigned homework. The reasoning and solutions to parts (a)-(d) are identical to the corresponding questions from your homework, although I have re-worded the question for clarity. Part (e) is new.
2. Let x_{1}, \ldots, x_{n} be a sample of n observations and define $y_{i}=c+d x_{i}$ where c and d are constants and $d \neq 0$. Let \bar{x} be the sample mean and s_{x}^{2} be the sample variance of x. Analogously, let \bar{y} be the sample mean and s_{y}^{2} be the sample variance of y. Show your work in each of the following parts and note that your answers may involve c and d.
(a) Express \bar{y} in terms of \bar{x}.
(b) Express s_{y}^{2} in terms of s_{x}^{2}.
(c) Express s_{y} in terms of s_{x}.
(d) Let z_{i}^{x} be the sample z-score of x_{i} and z_{i}^{y} be the sample z-score of y_{i}. Briefly explain how z_{i}^{y} is related to z_{i}^{x}. Does the relationship depend on c or d ? If so, how?

10 (e) Calculate the sample correlation $r_{x y}$ between x and y. Does the answer depend on c or d ? If so, how?
\qquad
\qquad
3. Suppose that 1 out of N coins is defective and I chose my coin at random. Whereas a regular coin is equally likely to come up heads or tails, a defective coin always comes up heads. I choose a coin at random and flip it ten times: I get ten heads. Let D be the event that my coin is defective and A be the event that I get ten heads in ten flips of my coin. Be sure to explain your reasoning in each of the following parts.
(a) What is $P(A \mid D)$?

4 (b) What is $P\left(A \mid D^{c}\right)$?
$4 \quad$ (c) Expressed as a function of N, what is $P(D)$?
(d) Expressed in terms of N, what is $P\left(D^{c}\right)$?
(e) Expressed in terms of N, what is $P(A)$?
(f) Expressed in terms of N, what is $P(D \mid A)$?
\qquad
\qquad
4. To answer this question, you will need the following fact: in R the function factorial is used instead of an exclamation point "!" to calculate a factorial. For example, factorial(3) would return a result of 6 .
(a) Write down the formula for $\binom{n}{k}$ in terms of factorials. To be clear: this part is not asking you for any R code.

10 (b) Using your formula from the preceding part, write an R function called mycombn that calculates combinations. Your function should take two inputs, n and k and return a single output: $\binom{n}{k}$.
\qquad
\qquad
5. This question is based on a dataset called pickup.csv containing the model year, mileage, price (in US dollars), and make of 46 pickup trucks listed for sale on Craigslist in Austin Texas. Here are the first few rows of the dataset:

	year	miles	price	make
1:	2008	17638	14995	GMC
2:	2003	174000	8500	Dodge
3:	2001	1500	9998	Dodge
4:	2007	22422	23950	GMC
5:	2007	34815	19980	GMC
6:	1997	167000	5000	GMC

In any R code that you write to answer this question, you may assume that the data.table package has already be installed and loaded.
(a) The data are stored at http://jgscott.github.io/teaching/data/pickup.csv. Using this url, write out the line of R code you would use to download the file pickup.csv and store it in a data.table called pickup.

3 (b) Here is a table that contains average price for each make of truck:

	make	avg_price
1:	GMC	7996.208
2:	Dodge	6554.200
3:	Ford	8867.917

Write down the line of R code you would use to generate these results.

3 (c) Here are the results of a linear regression that uses miles to predict price:
Coefficients:
(Intercept) miles

Write down the line of R code you would use to generate these results.
\qquad
\qquad
(d) In the regression results from above, what are the units of the intercept? What are the units of the slope?
(e) Suppose a truck with zero miles were listed on Craigslist. Based on the regression results from above, what price would we predict for this truck?
(f) Consider two pickup trucks: truck A has 10,000 more miles than truck B. Based on the regression results from above, which truck would we predict has the higher price? How much higher?

5 (g) The sample mean of price is approximately 7900 dollars. Based on the regression results from above, approximately what is the sample mean of miles?
\qquad
\qquad

