Final Examination
Econ 103, Statistics for Economists

December 11th, 2015

You Will have 120 MINUTES TO COM-
PLETE THIS EXAM. GRAPHING CALCU-
LATORS, NOTES, AND TEXTBOOKS ARE
NOT PERMITTED.

I pledge that, in taking and preparing for this exam, I have abided by the University of Pennsylvania's Code of Academic Integrity. I am aware that any violations of the code will result in a failing grade for this course.

Name: \qquad

Student ID \#: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	Total
Points:	30	25	40	15	40	50	200
Score:							

Instructions: Answer all questions in the space provided, continuing on the back of the page if you run out of space. Show your work for full credit but be aware that writing down irrelevant information will not gain you points. Be sure to sign the academic integrity statement above and to write your name and student ID number on each page in the space provided. Make sure that you have all pages of the exam before starting.

Warning: If you continue writing after we call time, even if this is only to fill in your name, twenty-five points will be deducted from your final score. In addition, two points will be deducted for each page on which you do not write your name and student ID.

1. Mark each statement as TRUE or FALSE. If FALSE provide a one sentence explanation.
(a) If $(2,6)$ is a $95 \% \mathrm{CI}$ for μ, we do not reject $H_{0}: \mu=1$ vs. $H_{A}: \mu \neq 1$ with $\alpha=0.05$.
(b) A Type I error is rejecting a false null hypothesis.
(c) The smaller the p-value the stronger the evidence against H_{0}.
(d) The power of a hypothesis test equals the probability of making a Type II error.
(e) If A and B are mutually exclusive events then $P(A \cup B)=P(A)+P(B)$.
(f) If A and B events such that A implies B then $P(A) \leq P(B)$.
(g) The concept of efficiency involves comparing the MSE of biased estimators.
(h) If X is a continuous RV with pdf $f(x)$ then $f(0)$ gives $P(X=0)$.
(i) If X and Y are two RVs, then $E[X Y]=\operatorname{Cov}(X, Y)+E[X] E[Y]$.
(j) If X and Y are discrete RVs then $p_{Y}(y)=\sum_{\text {all } y} p_{X Y}(x, y)$.
\qquad
\qquad
2. For each of the following, provide R code to generate the specified result.
(a) Suppose I have a data table called gradebook with a column called midterm1. Write down R code to display only those rows of gradebook for which the entry in midterm1 is at least 80 .

6 (b) Write code to plot the CDF of a $\chi^{2}(5)$ RV from 0 to 10 over a grid of 1001 values.
(c) Write code to create a vector containing 20 simulated rolls of a fair, six-sided die.

10 (d) Write an R function called my.rt to make one random draw from the $t(\nu)$ distribution. Your function should take one input argument, the degrees of freedom nu , and return the random draw. In your answer you may use any R functions you like except for rt .
\qquad
\qquad
3. This question concerns a game played by rolling a fair, six-sided die with sides numbered $1-6$. To play the game you roll the die once. Let x denote the number on the side that shows face-up. If x is even you win x dollars but if x is odd you win $2 x$ dollars.

4 (a) Suppose you were to play this game an extremely large number of times. On average, how much would you win per play?
(b) Your winnings in one play of this game can be viewed as the realization of a discrete random variable Z. Calculate $\operatorname{Var}(Z)$.
(c) Suppose you play this game 69 times consecutively. Based on the approximation provided by the CLT, roughly what is the probability that your average winnings will be less than $\$ 4.34$ per play?
\qquad
\qquad

For rest of this question we change the rules of the game as follows: after rolling the die and observing x you are given the option to roll a second time. If you choose not to roll a second time, your winnings are calculated as before: x dollars if x is even and $2 x$ dollars if x is odd. If you do choose to roll again your winnings are calculated in the same way but based on whatever number comes up on your second roll. For example if your initial roll is 3 and you re-roll and get a 1 then you win 2 dollars.
(d) If you want to maximize your average winnings over a large number of plays of this modified game, then you should choose to roll a second time if and only if your first roll is a 1,2 , or 4 . Briefly explain why.

15 (e) Nina played this game once following the strategy given in the preceding part. She won 10 dollars. Given this information, what is the probability that she chose to roll the die a second time?
\qquad
4. Clayton wants to know the fraction of Penn students who come from Guam, a small western Pacific island, so he polls a random sample of 96: none come from Guam.
(a) Apply the "textbook" procedure for constructing an approximate 95% CI for a population proportion based on the CLT to the data given in the problem statement.

5 (b) Repeat the preceding part using the refined interval.
(c) Compare and contrast the two intervals you constructed above. Which makes more sense and why? Briefly explain your answer.
\qquad
5. Professor Quack has developed a diet plan where you are allowed to eat anything you want as long you wash down every meal with a spoonful of pickle juice. He claims that if you follow this diet you will lose, on average, 3 kg over 4 weeks. Matt decides to carry out an experiment to test this claim. He recruits a random sample of 25 subjects and puts all of them on the "pickle juice diet." Let X_{i} be person i 's weight (in kg) before beginning the diet and Y_{i} be person i 's weight (in kg) after four weeks on the diet. The summary statistics from Matt's experiment are as follows:

	X	Y
Sample Mean	83	82
Sample S.D.	6	10
Correlation	0.3	

Throughout this question please work with the approximation provided by the CLT. For simplicity you may treat this approximation as though it were exact.
(a) Is this an independent samples or matched pairs problem? Explain in one sentence.

4 (b) Let L_{i} denote the (positive) amount of weight that subject i lost over the course Matt's experiment: $L_{i}=X_{i}-Y_{i}$. Calculate \bar{L}, the sample mean of the L_{i}.
(c) Continuing from the preceding part calculate S_{L}^{2}, the sample variance of the L_{i}.
\qquad
\qquad

Suppose Matt decides to test the null hypothesis that population mean weight loss for people on the "pickle juice" diet is zero against the one-sided alternative of positive weight loss at the 2.5% significance level.
3
(d) What is the critical value for Matt's test?

4 (e) What is the value of Matt's test statistic?

2 (f) Does Matt reject the null hypothesis at his specified significance level?

3 (g) Write down the R command Matt would use to calculate the p-value for his test.
\qquad
\qquad

Alyson reads about Matt's results in the prestigious West Philadelphia Journal of Dietary Science and decides to replicate his experiment using a larger sample of subjects from the same population. To obtain approval from the Institutional Review Board at Penn, she must carry out a power calculation. In her study Alyson plans to use the same statistical test as Matt, with the same significance level, null, and alternative hypothesis. Analyzing power requires knowledge of the population standard deviation of the L_{i}. Since Alyson doesn't know this quantity she approximates it using the sample standard deviation from Matt's experiment.

15 (h) How large a sample size should Alyson recruit to ensure that the power of her test will be at least 0.84 if Professor Quack's claim is correct, i.e. if the diet causes an average weight loss of 3 kg ?
\qquad
6. An R data table called houses contains the sale price and characteristics of a random sample of 128 houses sold in Kansas City in a single year. The first few rows of the data table are as follows:

In this question we will only work with the columns sqft, brick and price: brick is a categorical variable that indicates whether or not the house in question is made of brick, sqft gives the size of the house in square feet, and price is the sale price of the house in US dollars. The final two pages of this exam contain regression results and plots that relate to this question. You may want to tear them out for easy reference when answering the following. You may assume throughout this question that there are no missing values.

Parts (a) and (b) refer to the first of the two plots on the final page of this exam.
(a) Give R code to create the plot, including axis labels and title.

6 (b) Explain what this plot shows using bullet points with no more than three bullets.
\qquad
\qquad

Suppose I wanted to test the null hypothesis that the average price for brick and nonbrick houses in Kansas City are the same against the two-sided alternative.
(c) Which set of regression results should I consult?
(d) On average, how much more does a brick house cost in Kansas City?
(e) Approximately what is the p-value of my test?
(f) Is there convincing evidence that brick houses cost more? Explain in one sentence.

Suppose I wanted to use square-footage alone to predict house prices in Kansas City based on a simple linear regression model.
(g) Which set of regression results should I consult?
(h) The second plot on the final page of this exam plots the data and regression line. Give the R code to produce this plot, including all axis labels and the title. You do not need to give the code to run the regression: you can use the coefficient values from the regression output I provide when plotting the regression line.
\qquad
\qquad
(i) What is the sample correlation between house prices and square-footage?
(j) Based on the regression results, how much more would we predict that a house would cost if it were 100 square feet larger?
(k) Construct an approximate 95% confidence interval for the regression slope, including the appropriate units.

Now suppose I wanted to use both brick and sqft to predict house prices. There are two ways I could do this: by allowing only a different intercept for brick houses or by allowing both a different intercept and and a different slope.
(l) Suppose I only allow a different intercept, not a different slope. Based on the appropriate set of regression results, how much larger would a non-brick house have to be for us to predict it to have the same sale price as a brick house?

6 (m) Do the regression results provide convincing evidence that brick houses command a higher premium per square foot than non-brick houses? Explain briefly in bullet points using no more than two bullets.
\qquad
\qquad

```
Regression #1
lm(formula = price ~ brick + sqft, data = houses)
    coef.est coef.se
(Intercept) -9444.29 16577.13
brickYes 23445.10 3709.81
sqft 66.06 8.27
---
n = 128, k = 3
residual sd = 19644.14, R-Squared = 0.47
```


Regression \#2

lm(formula $=$ price ~ brick, data = houses)
coef.est coef.se
(Intercept) 121958.142593 .50
brickYes 25810.91 4527.59

$\mathrm{n}=128, \mathrm{k}=2$
residual $s d=24051.17$, R -Squared $=0.21$

Regression \#3

```
lm(formula = price ~ brick + sqft + brick:sqft, data = houses)
            coef.est coef.se
(Intercept) 4448.23 19396.56
brickYes -27193.38 37234.31
sqft 59.07 9.69
brickYes:sqft 25.13 18.39
---
n = 128, k = 4
residual sd = 19576.29, R-Squared = 0.48
```

Regression \#4
lm(formula $=$ price \sim sqft, data $=$ houses)
coef.est coef.se
(Intercept) -10091.13 18966.10
$\begin{array}{lll}\text { sqft } & 70.23 & 9.43\end{array}$

$\mathrm{n}=128, \mathrm{k}=2$
residual $s d=22475.53, R-$ Squared $=0.31$
\qquad
\qquad

Brick House?

\qquad
\qquad

