Final Examination
Econ 103, Statistics for Economists

December 16Th, 2014

You will have 120 minutes to complete
this exam. Graphing calculators, notes,
and textbooks are not permitted.

I pledge that, in taking and preparing for this exam, I have abided by the University of Pennsylvania's Code of Academic Integrity. I am aware that any violations of the code will result in a failing grade for this course.

Name: \qquad

Student ID \#: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	50	70	200
Score:							

Instructions: Answer all questions in the space provided, continuing on the back of the page if you run out of space. Show your work for full credit but be aware that writing down irrelevant information will not gain you points. Be sure to sign the academic integrity statement above and to write your name and student ID number on each page in the space provided. Make sure that you have all pages of the exam before starting.

Warning: If you continue writing after we call time, even if this is only to fill in your name, twenty-five points will be deducted from your final score. In addition, two points will be deducted for each page on which you do not write your name and student ID.

1. Consider the following simple dataset with nine observations of two variables:

x	y
1	1
2	1
3	1
1	2
2	2
3	2
1	3
2	3
3	3

(a) (4 points) Calculate \bar{x} and \bar{y}.
(b) (4 points) Calculate s_{x}^{2} and s_{y}^{2}.
(c) (6 points) Calculate $s_{x y}$.
(d) (6 points) Calculate the slope and intercept of a linear regression model that uses this dataset to predict y from x.
2. (20 points) Let $Y \sim \operatorname{Bernoulli}(1 / 3)$ and define X conditional on Y as follows: if $Y=0$ then $X \sim \operatorname{Bernoulli}(3 / 4)$, otherwise $X \sim \operatorname{Bernoulli}(4 / 5)$. Write the joint pmf of X and Y in a 2×2 table. Put the X-values in the rows and the Y-values in the columns.
\qquad
3. Suppose I take a meter stick and break it into two pieces. The exact point at which I break it, S, is random and follows a Uniform distribution. Thus, the length of the first piece is simply S while the length of the second piece is $1-S$.
(a) (10 points) Let A be the area of a rectangle with sides S and $1-S$. Calculate the expected value of A.
(b) (10 points) The R command runif (n) draws n independent, Uniform $(0,1)$ random variables. Using this command, write R code to verify your solution to the preceding part via Monte Carlo simulation using 1000 draws.
\qquad
\qquad
4. To pay off his gambling debts to Rodrigo, Rossa has taken a part-time job as a plumber and needs to measure the length of two pipes. When he uses his measuring tape, Rossa makes normally distributed errors with variance σ^{2} and mean zero: if an object's true length is ℓ, his measurement is $L \sim N\left(\ell, \sigma^{2}\right)$. Suppose that each measurement error is independent of the others and let ℓ_{A}, ℓ_{B} denote the true lengths of pipes A and B .
(a) (4 points) Rossa decides to start with pipe A. Following the adage "measure twice, cut once," his instinct is to make two measurements of the pipe and use the average to estimate ℓ_{A}. Calculate the bias and variance of this estimator.
(b) (4 points) Rossa notices that pipe A is clearly longer than pipe B and comes up with an idea: rather than measuring each pipe twice, he'll lay the pipes end to end and measure the sum and difference of their lengths. Let D be Rossa's measurement of the difference of lengths, and S be his measurement of the sum of lengths. Assume that Rossa lines up the pipes perfectly: when he measures any length (of a single pipe, a sum or a difference) his measurement equals the true length plus a $N\left(0, \sigma^{2}\right)$ error, as above. What is the distribution of D ? What is the distribution of S ?
\qquad
\qquad
(c) (6 points) Rossa decides to estimate ℓ_{A} using $(S+D) / 2$ and ℓ_{B} using $(S-D) / 2$. Are these estimators unbiased? If so, prove it. If not, calculate the bias of each.
(d) (6 points) Calculate the variance of the two estimators from the preceding part.
5. Petra has a dataframe called reaction containing measurements of the reaction times of 19 students given in seconds. Although 19 observations is a relatively small sample size, you may assume for the purposes of this question that the approximation based on the Central Limit Theorem applies. Each row of reaction corresponds to an individual: the value in the column dom gives that individual's reaction time using her dominant hand while the value in the column nondom gives her reaction time using her non-dominant hand. For example, I am left-handed so my value for dom would be my reaction time with my left hand. Here are the first six rows of the dataframe and some summary statistics:

dom			
nondom			
1	0.159	0.188	
2	0.176	0.194	
3	0.180	0.171	
4	0.130	0.195	
5	0.180	0.199	
6	0.121	0.179	
		dom	nondom
	Sample Mean	0.180	0.202
Sample S.D.	0.045	0.048	
Correlation		0.83	

(a) (5 points) Give the units of each of the summary statistics from the above table.
(b) (5 points) All of the measurements in reaction are smaller than a second so Petra runs the R command reaction <- 1000 * reaction to convert the dataset to milliseconds. Give the updated values for each of the above summary statistics.
\qquad
\qquad
(c) (5 points) Petra wants to use the data contained in reaction to determine whether people's reaction times differ when they use their dominant versus non-dominant hand. Is this a problem based on two independent samples or matched pairs? Explain briefly.
(d) (15 points) Write R code that computes a 90% confidence interval for the difference of population mean reaction times: non-dominant minus dominant.
\qquad
(e) (15 points) Now suppose that, instead of calculating a confidence interval, Petra wanted to test the null hypothesis that reaction times are the same regardless of whether one uses one's dominant or non-dominant hand against the two-sided alternative. Calculate the value of the appropriate test statistic.
(f) (5 points) Approximately what is the p-value for Petra's test from the preceding part? What should she conclude?
\qquad
\qquad
6. This question concerns a dataframe called birthdata containing observational data on 1000 mothers and their first-born children: birthweight is a given child's birth weight in grams, weeksgest is the number of weeks between that child's conception and his or her birth (i.e. weeks of gestation), and smoker is a dummy variable that takes on the value one if that child's mother smoked during pregnancy. Here are the first few rows:

	birthweight	weeksgest	smoker
1	4252	38	1
2	4229	42	0
3	4338	41	0
4	3850	39	0
5	3430	41	0
6	3260	39	0

To answer this question, refer to the regression results on final page of the exam.
(a) (6 points) What is the sample mean birth weight for children whose mother smoked during pregnancy? How does this compare to the sample mean birth weight for children whose mothers did not smoke during pregnancy?
(b) (6 points) Construct an approximate 95% confidence interval for the population mean difference of birth weights between children whose mothers smoked during pregnancy and those whose mothers did not.
\qquad
\qquad
(c) (6 points) Suppose you wanted to carry out a two-sided test of the null hypothesis that the children of smokers and non-smokers weigh the same, on average, at birth. What is the value of your test statistic? Write out the full R command needed to calculate the p-value for this test. Approximately what would be your result?
(d) (6 points) Interpret your results from the preceding two parts. Do they provide evidence of a causal relationship between smoking and birth weight?
(e) (5 points) What is the sample correlation between birthweight and weeksgest?
\qquad
\qquad
(f) (6 points) Suppose we wanted to use weeksgest alone to predict birthweight. For two newborns who differ by one week in gestation time, by how much would we predict that their birth weights differ?
(g) (5 points) What are the units of the slope in Regression \#2?
(h) (6 points) What is the meaning of the intercept in Regression \#2?.
(i) (6 points) If you were given the task of predicting birthweight as accurately as possible either using smoker or using weeksgest but not both, which would you use? How much more accurate is your preferred model? Explain briefly.
\qquad
\qquad
(j) (6 points) Suppose you wanted to predict birthweight using both smoker and weeksgest. Two of the four regressions are relevant for this task, although they differ in the way in which they use the information from the two variables. Which models are they, and how do they differ in the relationship they fit between birthweight and weeksgest depending on the value of smoker? In your answer, discuss only the regression models, not the results of fitting these models to birthdata.
(k) (12 points) For each of the models you listed in your answer to the preceding part, use the appropriate regression results to write out the rule we would use to predict birthweight from weeksgest for a child whose mother smoked during pregnancy. Repeat for a child whose mother did not smoke during pregnancy.
\qquad

Regression \#1

```
lm(formula = birthweight ~ smoker, data = birthdata)
    coef.est coef.se
(Intercept) 3472.48 18.30
smoker -292.91 50.96
---
n = 1000, k = 2
residual sd = 540.20, R-Squared = 0.03
```


Regression \#2

$\operatorname{lm}(f o r m u l a=$ birthweight \sim weeksgest, data $=$ birthdata)
coef.est coef.se
(Intercept) -1009.00 281.10
weeksgest $112.82 \quad 7.13$

$\mathrm{n}=1000, \mathrm{k}=2$
residual sd $=490.87$, R-Squared $=0.20$

Regression \#3

lm(formula = birthweight \sim smoker + weeksgest, data = birthdata) coef.est coef.se
(Intercept) -940.49 276.31
smoker -278.90 45.49
weeksgest $111.99 \quad 7.00$

$\mathrm{n}=1000, \mathrm{k}=3$
residual $s d=482.11, R-$ Squared $=0.23$

Regression \#4

$\operatorname{lm}(f o r m u l a=$ birthweight \sim smoker + weeksgest + smoker:weeksgest, data = birthdata)
coef.est coef.se
(Intercept) -1069.20 303.79
smoker $\quad 461.93 \quad 728.26$
weeksgest $\quad 115.26 \quad 7.70$
smoker:weeksgest -18.85 18.49
--
$\mathrm{n}=1000, \mathrm{k}=4$
residual sd $=482.10, R$-Squared $=0.23$
\qquad
\qquad

