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This handout contains some extra information on conditional expectation. I
will not test you on anything that appears in this note but not in the lecture
slides. However, if you want a deeper understanding of conditional expecta-
tion, reading through this material will be very helpful. Mathematically, the
material that appears below is straightforward, using only tools and tech-
niques that should be familiar from class. Conceptually, however, some of
the discussion below goes beyond what we’ll cover in class.

Evaluating a Prediction of Y Suppose that we are asked to submit a
prediction m of a random variable Y . What value of m might we choose?
A good prediction should be “close” to Y on average, but we have to define
what we mean by “close.” One possibility is to choosem to minimize expected
squared error, namely

choose m to minimize E
[
(Y −m)2

]
Expanding, and using the linearity of expectation and the shortcut formula,

E
[
(Y −m)2

]
= E

[
Y 2 − 2mY +m2

]
= E[Y 2]− 2mE[Y ] +m2

=
(
σ2
Y + µ2

Y

)
− 2mµY +m2

Now, we need to minimize over m. Remember, σ2
Y and µY are constants with

respect to this minimization problem. The first order condition is:

2m− 2µY = 0

and hence our solution is m = µY , noting that the second order condition
for a minimum is satsified. We have shown that the best forecast of Y is µY ,
if our criterion of “best” is minimizing expected squared error.
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Using X to Predict Y Above we were asked to submit a fixed prediction
of Y . Suppose now that we observe another random variable X and are
allowed to make our forecast for Y depend on X. In this case we will choose
a function m such that our prediction of Y is m(X). Again, the question
is what to choose for m? Suppose that we once again decide to minimize
expected squared error:

choose m to minimize E
[
{Y −m(X)}2

]
So what functionm should we choose? To answer this, we re-write {Y −m(X)}2
by adding and subtracting E[Y |X] and expanding:

{Y −m(X)}2 = {Y − E[Y |X] + E[Y |X]−m(X)}2

=
[
{Y − E[Y |X]} − {m(X)− E[Y |X]}

]2
= {Y − E[Y |X]}2 + {m(X)− E[Y |X]}2 − 2 {Y − E[Y |X]} {m(X)− E[Y |X]}

Now, we want to choose m to minimize the expected value of the preceding
expression, namely

E
[
{Y − E[Y |X]}2

]
+E
[
{m(X)− E[Y |X]}2

]
−2E

[
{Y − E[Y |X]} {m(X)− E[Y |X]}

]
Notice that the first of the three terms doesn’t involve m, so we can treat it
as a constant in our minimization problem and just ignore it. Thus it suffices
to find the function m that minimizes

E
[
{m(X)− E[Y |X]}2

]
− 2E

[
{Y − E[Y |X]} {m(X)− E[Y |X]}

]
The second term in this expression is quite complicated, but it turns out
that one can show (using the law of iterated expectations) that it is al-
ways equal to zero. Thus, it suffices to find the function m that minimizes
E
[
{m(X)− E[Y |X]}2

]
and the answer is clearly m(X) = E[Y |X]. Hence,

we have shown that E[Y |X] is the forecast of Y that minimizes expected
squared error.

Deriving the Law of Iterated Expectations: Discrete RV

EX

[
EY |X [Y |X]

]
= EX

[∑
y

y pY |X(y|x)

]
=
∑
x

(∑
y

y pY |X(y|x)

)
pX(x)

=
∑
x

∑
y

y pX(x) pY |X(y|x) =
∑
x

∑
y

y pXY (x, y)

=
∑
y

y
∑
x

pXY (x, y) =
∑
y

y pY (y) = E[Y ]
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The second step is the tricky one. Here what we’re doing is calculating the
expected value of the function g(X) =

∑
y pY |X(y|X) with respect to the

marginal pmf of X.

Deriving the Law of Iterated Expectations: Continuous RV Same
as above, but replace sums with itegrals.
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